Python numpy.core.numeric.asanyarray() Examples

The following are 30 code examples of numpy.core.numeric.asanyarray(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.core.numeric , or try the search function .
Example #1
Source File: _methods.py    From Computable with MIT License 6 votes vote down vote up
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    rcount = _count_reduce_items(arr, axis)
    # Make this warning show up first
    if rcount == 0:
        warnings.warn("Mean of empty slice.", RuntimeWarning)


    # Cast bool, unsigned int, and int to float64 by default
    if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
        dtype = mu.dtype('f8')

    ret = um.add.reduce(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(
                ret, rcount, out=ret, casting='unsafe', subok=False)
    else:
        ret = ret.dtype.type(ret / rcount)

    return ret 
Example #2
Source File: _methods.py    From ImageFusion with MIT License 6 votes vote down vote up
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    rcount = _count_reduce_items(arr, axis)
    # Make this warning show up first
    if rcount == 0:
        warnings.warn("Mean of empty slice.", RuntimeWarning)


    # Cast bool, unsigned int, and int to float64 by default
    if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
        dtype = mu.dtype('f8')

    ret = umr_sum(arr, axis, dtype, out, keepdims)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(
                ret, rcount, out=ret, casting='unsafe', subok=False)
    elif hasattr(ret, 'dtype'):
        ret = ret.dtype.type(ret / rcount)
    else:
        ret = ret / rcount

    return ret 
Example #3
Source File: _methods.py    From Fluid-Designer with GNU General Public License v3.0 6 votes vote down vote up
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    rcount = _count_reduce_items(arr, axis)
    # Make this warning show up first
    if rcount == 0:
        warnings.warn("Mean of empty slice.", RuntimeWarning)


    # Cast bool, unsigned int, and int to float64 by default
    if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
        dtype = mu.dtype('f8')

    ret = umr_sum(arr, axis, dtype, out, keepdims)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(
                ret, rcount, out=ret, casting='unsafe', subok=False)
    elif hasattr(ret, 'dtype'):
        ret = ret.dtype.type(ret / rcount)
    else:
        ret = ret / rcount

    return ret 
Example #4
Source File: _methods.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
    arr = asanyarray(a)

    rcount = _count_reduce_items(arr, axis)
    # Make this warning show up first
    if rcount == 0:
        warnings.warn("Mean of empty slice.", RuntimeWarning)

    # Cast bool, unsigned int, and int to float64 by default
    if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
        dtype = mu.dtype('f8')

    ret = umr_sum(arr, axis, dtype, out, keepdims)
    if isinstance(ret, mu.ndarray):
        ret = um.true_divide(
                ret, rcount, out=ret, casting='unsafe', subok=False)
    elif hasattr(ret, 'dtype'):
        ret = ret.dtype.type(ret / rcount)
    else:
        ret = ret / rcount

    return ret 
Example #5
Source File: type_check.py    From mxnet-lambda with Apache License 2.0 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #6
Source File: type_check.py    From lambda-packs with MIT License 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #7
Source File: type_check.py    From lambda-packs with MIT License 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convert to array-scalar if needed 
Example #8
Source File: type_check.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #9
Source File: type_check.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #10
Source File: type_check.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convert to array-scalar if needed 
Example #11
Source File: type_check.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #12
Source File: type_check.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #13
Source File: type_check.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return res[()]   # convert to scalar if needed 
Example #14
Source File: ufunclike.py    From Fluid-Designer with GNU General Public License v3.0 5 votes vote down vote up
def fix(x, y=None):
    """
    Round to nearest integer towards zero.

    Round an array of floats element-wise to nearest integer towards zero.
    The rounded values are returned as floats.

    Parameters
    ----------
    x : array_like
        An array of floats to be rounded
    y : ndarray, optional
        Output array

    Returns
    -------
    out : ndarray of floats
        The array of rounded numbers

    See Also
    --------
    trunc, floor, ceil
    around : Round to given number of decimals

    Examples
    --------
    >>> np.fix(3.14)
    3.0
    >>> np.fix(3)
    3.0
    >>> np.fix([2.1, 2.9, -2.1, -2.9])
    array([ 2.,  2., -2., -2.])

    """
    x = nx.asanyarray(x)
    y1 = nx.floor(x)
    y2 = nx.ceil(x)
    if y is None:
        y = nx.asanyarray(y1)
    y[...] = nx.where(x >= 0, y1, y2)
    return y 
Example #15
Source File: type_check.py    From pySINDy with MIT License 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #16
Source File: type_check.py    From pySINDy with MIT License 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #17
Source File: type_check.py    From pySINDy with MIT License 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convert to array-scalar if needed 
Example #18
Source File: type_check.py    From recruit with Apache License 2.0 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #19
Source File: type_check.py    From mxnet-lambda with Apache License 2.0 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #20
Source File: type_check.py    From mxnet-lambda with Apache License 2.0 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True], dtype=bool)

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convet to array-scalar if needed 
Example #21
Source File: ufunclike.py    From ImageFusion with MIT License 5 votes vote down vote up
def fix(x, y=None):
    """
    Round to nearest integer towards zero.

    Round an array of floats element-wise to nearest integer towards zero.
    The rounded values are returned as floats.

    Parameters
    ----------
    x : array_like
        An array of floats to be rounded
    y : ndarray, optional
        Output array

    Returns
    -------
    out : ndarray of floats
        The array of rounded numbers

    See Also
    --------
    trunc, floor, ceil
    around : Round to given number of decimals

    Examples
    --------
    >>> np.fix(3.14)
    3.0
    >>> np.fix(3)
    3.0
    >>> np.fix([2.1, 2.9, -2.1, -2.9])
    array([ 2.,  2., -2., -2.])

    """
    x = nx.asanyarray(x)
    y1 = nx.floor(x)
    y2 = nx.ceil(x)
    if y is None:
        y = nx.asanyarray(y1)
    y[...] = nx.where(x >= 0, y1, y2)
    return y 
Example #22
Source File: type_check.py    From Splunking-Crime with GNU Affero General Public License v3.0 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #23
Source File: type_check.py    From Splunking-Crime with GNU Affero General Public License v3.0 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #24
Source File: type_check.py    From Splunking-Crime with GNU Affero General Public License v3.0 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True], dtype=bool)

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convet to array-scalar if needed 
Example #25
Source File: type_check.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #26
Source File: type_check.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #27
Source File: type_check.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True], dtype=bool)

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convet to array-scalar if needed 
Example #28
Source File: type_check.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def real(val):
    """
    Return the real part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The real component of the complex argument. If `val` is real, the type
        of `val` is used for the output.  If `val` has complex elements, the
        returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])
    >>> np.real(1 + 1j)
    1.0

    """
    try:
        return val.real
    except AttributeError:
        return asanyarray(val).real 
Example #29
Source File: type_check.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def imag(val):
    """
    Return the imaginary part of the complex argument.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray or scalar
        The imaginary component of the complex argument. If `val` is real,
        the type of `val` is used for the output.  If `val` has complex
        elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])
    >>> np.imag(1 + 1j)
    1.0

    """
    try:
        return val.imag
    except AttributeError:
        return asanyarray(val).imag 
Example #30
Source File: type_check.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return res[()]   # convert to scalar if needed