Python numpy.core.numeric.signbit() Examples

The following are 24 code examples of numpy.core.numeric.signbit(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.core.numeric , or try the search function .
Example #1
Source File: ufunclike.py    From mxnet-lambda with Apache License 2.0 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #2
Source File: ufunclike.py    From keras-lambda with MIT License 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #3
Source File: ufunclike.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #4
Source File: ufunclike.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #5
Source File: ufunclike.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #6
Source File: ufunclike.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #7
Source File: ufunclike.py    From elasticintel with GNU General Public License v3.0 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #8
Source File: ufunclike.py    From elasticintel with GNU General Public License v3.0 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #9
Source File: ufunclike.py    From Splunking-Crime with GNU Affero General Public License v3.0 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #10
Source File: ufunclike.py    From Splunking-Crime with GNU Affero General Public License v3.0 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #11
Source File: ufunclike.py    From ImageFusion with MIT License 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #12
Source File: ufunclike.py    From mxnet-lambda with Apache License 2.0 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #13
Source File: ufunclike.py    From lambda-packs with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #14
Source File: ufunclike.py    From pySINDy with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #15
Source File: ufunclike.py    From pySINDy with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #16
Source File: ufunclike.py    From Fluid-Designer with GNU General Public License v3.0 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #17
Source File: ufunclike.py    From GraphicDesignPatternByPython with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #18
Source File: ufunclike.py    From GraphicDesignPatternByPython with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #19
Source File: ufunclike.py    From Computable with MIT License 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #20
Source File: ufunclike.py    From vnpy_crypto with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out) 
Example #21
Source File: ufunclike.py    From vnpy_crypto with MIT License 4 votes vote down vote up
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    return nx.logical_and(nx.isinf(x), ~nx.signbit(x), out) 
Example #22
Source File: ufunclike.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #23
Source File: ufunclike.py    From lambda-packs with MIT License 4 votes vote down vote up
def isposinf(x, y=None):
    """
    Test element-wise for positive infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    y : array_like, optional
        A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a boolean array is returned
        with values True where the corresponding element of the input is
        positive infinity and values False where the element of the input is
        not positive infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as zeros
        and ones, if the type is boolean then as False and True.
        The return value `y` is then a reference to that array.

    See Also
    --------
    isinf, isneginf, isfinite, isnan

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when `x` is a
    scalar input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isposinf(np.PINF)
    array(True, dtype=bool)
    >>> np.isposinf(np.inf)
    array(True, dtype=bool)
    >>> np.isposinf(np.NINF)
    array(False, dtype=bool)
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([False, False,  True], dtype=bool)

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isposinf(x, y)
    array([0, 0, 1])
    >>> y
    array([0, 0, 1])

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y 
Example #24
Source File: ufunclike.py    From lambda-packs with MIT License 4 votes vote down vote up
def isneginf(x, out=None):
    """
    Test element-wise for negative infinity, return result as bool array.

    Parameters
    ----------
    x : array_like
        The input array.
    out : array_like, optional
        A boolean array with the same shape and type as `x` to store the
        result.

    Returns
    -------
    out : ndarray
        A boolean array with the same dimensions as the input.
        If second argument is not supplied then a numpy boolean array is
        returned with values True where the corresponding element of the
        input is negative infinity and values False where the element of
        the input is not negative infinity.

        If a second argument is supplied the result is stored there. If the
        type of that array is a numeric type the result is represented as
        zeros and ones, if the type is boolean then as False and True. The
        return value `out` is then a reference to that array.

    See Also
    --------
    isinf, isposinf, isnan, isfinite

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754).

    Errors result if the second argument is also supplied when x is a scalar
    input, or if first and second arguments have different shapes.

    Examples
    --------
    >>> np.isneginf(np.NINF)
    array(True, dtype=bool)
    >>> np.isneginf(np.inf)
    array(False, dtype=bool)
    >>> np.isneginf(np.PINF)
    array(False, dtype=bool)
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False])

    >>> x = np.array([-np.inf, 0., np.inf])
    >>> y = np.array([2, 2, 2])
    >>> np.isneginf(x, y)
    array([1, 0, 0])
    >>> y
    array([1, 0, 0])

    """
    return nx.logical_and(nx.isinf(x), nx.signbit(x), out)