Python numpy.core.numeric.floating() Examples
The following are 4
code examples of numpy.core.numeric.floating().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.core.numeric
, or try the search function
.
Example #1
Source File: ma.py From Computable with MIT License | 6 votes |
def masked_values (data, value, rtol=1.e-5, atol=1.e-8, copy=1): """ masked_values(data, value, rtol=1.e-5, atol=1.e-8) Create a masked array; mask is nomask if possible. If copy==0, and otherwise possible, result may share data values with original array. Let d = filled(data, value). Returns d masked where abs(data-value)<= atol + rtol * abs(value) if d is of a floating point type. Otherwise returns masked_object(d, value, copy) """ abs = umath.absolute d = filled(data, value) if issubclass(d.dtype.type, numeric.floating): m = umath.less_equal(abs(d-value), atol+rtol*abs(value)) m = make_mask(m, flag=1) return array(d, mask = m, copy=copy, fill_value=value) else: return masked_object(d, value, copy=copy)
Example #2
Source File: ma.py From Computable with MIT License | 5 votes |
def masked_equal(x, value, copy=1): """masked_equal(x, value) = x masked where x == value For floating point consider masked_values(x, value) instead. """ d = filled(x, 0) c = umath.equal(d, value) m = mask_or(c, getmask(x)) return array(d, mask=m, copy=copy)
Example #3
Source File: utils.py From sem with GNU General Public License v2.0 | 5 votes |
def stdout_automatic_parser(result): """ Try and automatically convert strings formatted as tables into a matrix. Under the hood, this function essentially applies the genfromtxt function to the stdout. Args: result (dict): the result to parse. """ np.seterr(all='raise') parsed = {} # By default, if dtype is None, the order Numpy tries to convert a string # to a value is: bool, int, float. We don't like this, since it would give # us a mixture of integers and doubles in the output, if any integers # existed in the data. So, we modify the StringMapper's default mapper to # skip the int check and directly convert numbers to floats. oldmapper = np.lib._iotools.StringConverter._mapper np.lib._iotools.StringConverter._mapper = [(nx.bool_, np.lib._iotools.str2bool, False), (nx.floating, float, nx.nan), (nx.complexfloating, complex, nx.nan + 0j), (nx.longdouble, nx.longdouble, nx.nan)] file_contents = result['output']['stdout'] with warnings.catch_warnings(): warnings.simplefilter("ignore") parsed = np.genfromtxt(io.StringIO(file_contents)) # Here we restore the original mapper, so no side-effects remain. np.lib._iotools.StringConverter._mapper = oldmapper return parsed
Example #4
Source File: utils.py From sem with GNU General Public License v2.0 | 4 votes |
def automatic_parser(result, dtypes={}, converters={}): """ Try and automatically convert strings formatted as tables into nested list structures. Under the hood, this function essentially applies the genfromtxt function to all files in the output, and passes it the additional kwargs. Args: result (dict): the result to parse. dtypes (dict): a dictionary containing the dtype specification to perform parsing for each available filename. See the numpy genfromtxt documentation for more details on how to format these. """ np.seterr(all='raise') parsed = {} # By default, if dtype is None, the order Numpy tries to convert a string # to a value is: bool, int, float. We don't like this, since it would give # us a mixture of integers and doubles in the output, if any integers # existed in the data. So, we modify the StringMapper's default mapper to # skip the int check and directly convert numbers to floats. oldmapper = np.lib._iotools.StringConverter._mapper np.lib._iotools.StringConverter._mapper = [(nx.bool_, np.lib._iotools.str2bool, False), (nx.floating, float, nx.nan), (nx.complexfloating, complex, nx.nan + 0j), (nx.longdouble, nx.longdouble, nx.nan)] for filename, contents in result['output'].items(): if dtypes.get(filename) is None: dtypes[filename] = None if converters.get(filename) is None: converters[filename] = None with warnings.catch_warnings(): warnings.simplefilter("ignore") parsed[filename] = np.genfromtxt(io.StringIO(contents), dtype=dtypes[filename], converters=converters[filename] ).tolist() # Here we restore the original mapper, so no side-effects remain. np.lib._iotools.StringConverter._mapper = oldmapper return parsed