Python pytorch_pretrained_bert.modeling.BertModel() Examples
The following are 30
code examples of pytorch_pretrained_bert.modeling.BertModel().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pytorch_pretrained_bert.modeling
, or try the search function
.
Example #1
Source File: seq2seq_bert_encoder.py From stog with MIT License | 6 votes |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, token_subword_index=None): """ :param input_ids: same as it in BertModel :param token_type_ids: same as it in BertModel :param attention_mask: same as it in BertModel :param output_all_encoded_layers: same as it in BertModel :param token_subword_index: [batch_size, num_tokens, num_subwords] :return: """ # encoded_layers: [batch_size, num_subword_pieces, hidden_size] encoded_layers, pooled_output = super(Seq2SeqBertEncoder, self).forward( input_ids, token_type_ids, attention_mask, output_all_encoded_layers) if token_subword_index is None: return encoded_layers, pooled_output else: return self.average_pooling(encoded_layers, token_subword_index), pooled_output
Example #2
Source File: seq2seq_bert_encoder.py From gtos with MIT License | 6 votes |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, token_subword_index=None): """ :param input_ids: same as it in BertModel :param token_type_ids: same as it in BertModel :param attention_mask: same as it in BertModel :param output_all_encoded_layers: same as it in BertModel :param token_subword_index: [batch_size, num_tokens, num_subwords] :return: """ # encoded_layers: [batch_size, num_subword_pieces, hidden_size] encoded_layers, pooled_output = super(Seq2SeqBertEncoder, self).forward( input_ids, token_type_ids, attention_mask, output_all_encoded_layers) if token_subword_index is None: return encoded_layers, pooled_output else: return self.average_pooling(encoded_layers, token_subword_index), pooled_output
Example #3
Source File: net.py From CAIL2019 with MIT License | 6 votes |
def __init__(self, config): super(BertCNNForTripletNet, self).__init__(config) filters = [3, 4, 5] self.bert = BertModel(config) self.embedding_dropout = SpatialDropout1D(config.hidden_dropout_prob) self.conv_layers = nn.ModuleList() for filter_size in filters: conv_block = nn.Sequential( nn.Conv1d( config.hidden_size, CHANNEL_UNITS, kernel_size=filter_size, padding=1, ), # nn.BatchNorm1d(CHANNEL_UNITS), # nn.ReLU(inplace=True), ) self.conv_layers.append(conv_block) self.apply(self.init_bert_weights)
Example #4
Source File: CailModel.py From cail2019 with Apache License 2.0 | 6 votes |
def __init__(self, config, answer_verification=True, hidden_dropout_prob=0.3): super(CailModel, self).__init__(config) self.bert = BertModel(config) # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version # self.qa_dropout = nn.Dropout(config.hidden_dropout_prob) self.qa_outputs = nn.Linear(config.hidden_size*4, 2) self.apply(self.init_bert_weights) self.answer_verification = answer_verification if self.answer_verification: self.retionale_outputs = nn.Linear(config.hidden_size*4, 1) self.unk_ouputs = nn.Linear(config.hidden_size, 1) self.doc_att = nn.Linear(config.hidden_size*4, 1) self.yes_no_ouputs = nn.Linear(config.hidden_size*4, 2) self.ouputs_cls_3 = nn.Linear(config.hidden_size*4, 3) self.beta = 100 else: # self.unk_yes_no_outputs_dropout = nn.Dropout(config.hidden_dropout_prob) self.unk_yes_no_outputs = nn.Linear(config.hidden_size, 3)
Example #5
Source File: run_ner.py From bert-ner with MIT License | 5 votes |
def __init__(self, config, num_labels): super(BertForNER, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = torch.nn.Dropout(0.4) self.hidden2label = torch.nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights)
Example #6
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertForTripletNet, self).__init__(config) self.bert = BertModel(config) self.apply(self.init_bert_weights)
Example #7
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertNormForTripletNet, self).__init__(config) self.bert = BertModel(config) self.norm = nn.BatchNorm1d(config.hidden_size) self.apply(self.init_bert_weights)
Example #8
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertPoolForTripletNet, self).__init__(config) self.bert = BertModel(config) self.apply(self.init_bert_weights)
Example #9
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertEmbeddingForTripletNet, self).__init__(config) self.bert = BertModel(config) self.apply(self.init_bert_weights)
Example #10
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertTwoForTripletNet, self).__init__(config) self.bert = BertModel(config) self.bert2 = BertModel(config) self.apply(self.init_bert_weights)
Example #11
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config, num_fts=19): super(BertFtsForTripletNet, self).__init__(config) self.bert = BertModel(config) self.fc = nn.Linear(num_fts, 19) self.apply(self.init_bert_weights)
Example #12
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertLSTMGRUForTripletNet, self).__init__(config) self.bert = BertModel(config) # self.embedding_dropout = SpatialDropout1D(config.hidden_dropout_prob) self.lstm = nn.LSTM( config.hidden_size, LSTM_UNITS, bidirectional=True, batch_first=True ) self.gru = nn.GRU( LSTM_UNITS * 2, LSTM_UNITS, bidirectional=True, batch_first=True ) self.apply(self.init_bert_weights)
Example #13
Source File: net.py From CAIL2019 with MIT License | 5 votes |
def __init__(self, config): super(BertLSTMForTripletNet, self).__init__(config) self.bert = BertModel(config) self.lstm = nn.LSTM( config.hidden_size, 30, bidirectional=True, batch_first=True ) self.apply(self.init_bert_weights)
Example #14
Source File: san.py From MT-DNN with MIT License | 5 votes |
def __init__( self, init_checkpoint_model: Union[BertModel, FairseqRobertModel], pooler, config: MTDNNConfig, ): super(SANBERTNetwork, self).__init__() self.config = config self.bert = init_checkpoint_model self.pooler = pooler self.dropout_list = nn.ModuleList() self.encoder_type = config.encoder_type self.hidden_size = self.config.hidden_size # Dump other features if value is set to true if config.dump_feature: return # Update bert parameters if config.update_bert_opt > 0: for param in self.bert.parameters(): param.requires_grad = False # Set decoder and scoring list parameters self.decoder_opts = config.decoder_opts self.scoring_list = nn.ModuleList() # Set task specific paramaters self.task_types = config.task_types self.task_dropout_p = config.tasks_dropout_p self.tasks_nclass_list = config.tasks_nclass_list # TODO - Move to training # Generate tasks decoding and scoring lists self._generate_tasks_decoding_scoring_options() # Initialize weights # self._my_init()
Example #15
Source File: model.py From neutralizing-bias with MIT License | 5 votes |
def __init__(self, config, cls_num_labels=2, tok_num_labels=2, tok2id=None): super(BertForMultitaskWithFeaturesOnTop, self).__init__(config) global ARGS self.bert = BertModel(config) self.featurizer = features.Featurizer( tok2id, lexicon_feature_bits=ARGS.lexicon_feature_bits) # TODO -- don't hardcode this... nfeats = 90 if ARGS.lexicon_feature_bits == 1 else 118 if ARGS.extra_features_method == 'concat': self.tok_classifier = ConcatCombine( config.hidden_size, nfeats, tok_num_labels, ARGS.combiner_layers, config.hidden_dropout_prob, ARGS.small_waist, pre_enrich=ARGS.pre_enrich, activation=ARGS.activation_hidden, include_categories=ARGS.concat_categories, category_emb=ARGS.category_emb, add_category_emb=ARGS.add_category_emb) else: self.tok_classifier = AddCombine( config.hidden_size, nfeats, ARGS.combiner_layers, config.hidden_dropout_prob, ARGS.small_waist, out_dim=tok_num_labels, pre_enrich=ARGS.pre_enrich, include_categories=ARGS.concat_categories, category_emb=ARGS.category_emb, add_category_emb=ARGS.add_category_emb) self.cls_dropout = nn.Dropout(config.hidden_dropout_prob) self.cls_classifier = nn.Linear(config.hidden_size, cls_num_labels) self.category_emb = ARGS.category_emb if ARGS.category_emb: self.category_embeddings = nn.Embedding(43, nfeats) self.apply(self.init_bert_weights)
Example #16
Source File: model.py From neutralizing-bias with MIT License | 5 votes |
def __init__(self, config, cls_num_labels=2, tok_num_labels=2, tok2id=None): super(BertForMultitask, self).__init__(config) self.bert = BertModel(config) self.cls_dropout = nn.Dropout(config.hidden_dropout_prob) self.cls_classifier = nn.Linear(config.hidden_size, cls_num_labels) self.tok_dropout = nn.Dropout(config.hidden_dropout_prob) self.tok_classifier = nn.Linear(config.hidden_size, tok_num_labels) self.apply(self.init_bert_weights)
Example #17
Source File: bert_pytorch.py From MAX-Toxic-Comment-Classifier with Apache License 2.0 | 5 votes |
def __init__(self, config, num_labels=2): super(BertForMultiLabelSequenceClassification, self).__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.dropout = torch.nn.Dropout(config.hidden_dropout_prob) self.classifier = torch.nn.Linear(config.hidden_size, num_labels) self.apply(self.init_bert_weights)
Example #18
Source File: sumbt.py From tatk with Apache License 2.0 | 5 votes |
def __init__(self, config): super(BertForUtteranceEncoding, self).__init__(config) self.config = config self.bert = BertModel(config)
Example #19
Source File: run_smooth.py From curriculum with GNU General Public License v3.0 | 5 votes |
def __init__(self, config, num_labels=2): super(BertForSmooth, self).__init__(config) self.dropout = torch.nn.Dropout(0.2) self.bert = BertModel(config) self.classifier = torch.nn.Linear(config.hidden_size, num_labels) self.loss = torch.nn.CrossEntropyLoss(torch.FloatTensor([1.0, 12.5])) self.apply(self.init_bert_weights)
Example #20
Source File: BertForLabelEncoding.py From SUMBT with MIT License | 5 votes |
def __init__(self, config, trainable=False): super(BertForLabelEncoding, self).__init__(config) self.config = config self.bert = BertModel(config) #self.apply(self.init_bert_weights) # don't need to perform due to pre-trained params loading if not trainable: for p in self.bert.parameters(): p.requires_grad = False
Example #21
Source File: bert_qa.py From mrc-for-flat-nested-ner with Apache License 2.0 | 5 votes |
def __init__(self, config): super(BertQA, self).__init__(config) self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) self.apply(self.init_bert_weights)
Example #22
Source File: ner_model.py From Doc2EDAG with MIT License | 5 votes |
def __init__(self, config, num_entity_labels): super(BertForBasicNER, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, num_entity_labels) self.apply(self.init_bert_weights) self.num_entity_labels = num_entity_labels
Example #23
Source File: BeliefTrackerSlotQueryMultiSlot.py From ConvLab with MIT License | 5 votes |
def __init__(self, config): super(BertForUtteranceEncoding, self).__init__(config) self.config = config self.bert = BertModel(config)
Example #24
Source File: bert.py From SemEval2019Task3 with MIT License | 5 votes |
def __init__(self, config): super(BERT_classifer, self).__init__(config) self.num_labels = NUM_EMO self.bert = BertModel(config) self.dropout = nn.Dropout(0.1) self.apply(self.init_bert_weights) self.bert_out_dim = None self.out2label = None self.out2binary = None self.out2emo = None
Example #25
Source File: probert.py From gap with MIT License | 5 votes |
def __init__(self, config, num_labels): super().__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.pooler = BertPooler(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(1*config.hidden_size, num_labels) self.apply(self.init_bert_weights)
Example #26
Source File: grep.py From gap with MIT License | 5 votes |
def __init__(self, config, num_labels): super().__init__(config) self.num_labels = num_labels self.bert = BertModel(config) self.pooler = BertPooler(config) self.evidence_pooler_p = EvidencePooler(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(2 * config.hidden_size, num_labels) torch.nn.init.xavier_uniform_(self.classifier.weight) self.apply(self.init_bert_weights)
Example #27
Source File: matcher.py From gobbli with Apache License 2.0 | 5 votes |
def __init__(self, opt, bert_config=None): super(SANBertNetwork, self).__init__() self.dropout_list = nn.ModuleList() self.bert_config = BertConfig.from_dict(opt) self.bert = BertModel(self.bert_config) if opt['update_bert_opt'] > 0: for p in self.bert.parameters(): p.requires_grad = False mem_size = self.bert_config.hidden_size self.decoder_opt = opt['answer_opt'] self.scoring_list = nn.ModuleList() labels = [int(ls) for ls in opt['label_size'].split(',')] task_dropout_p = opt['tasks_dropout_p'] self.bert_pooler = None for task, lab in enumerate(labels): decoder_opt = self.decoder_opt[task] dropout = DropoutWrapper(task_dropout_p[task], opt['vb_dropout']) self.dropout_list.append(dropout) if decoder_opt == 1: out_proj = SANClassifier(mem_size, mem_size, lab, opt, prefix='answer', dropout=dropout) self.scoring_list.append(out_proj) else: out_proj = nn.Linear(self.bert_config.hidden_size, lab) self.scoring_list.append(out_proj) self.opt = opt self._my_init() self.set_embed(opt)
Example #28
Source File: BeliefTrackerSlotQueryMultiSlot.py From SUMBT with MIT License | 5 votes |
def __init__(self, config): super(BertForUtteranceEncoding, self).__init__(config) self.config = config self.bert = BertModel(config)
Example #29
Source File: BeliefTrackerSlotQueryMultiSlotTransformer.py From SUMBT with MIT License | 5 votes |
def __init__(self, config): super(BertForUtteranceEncoding, self).__init__(config) self.config = config self.bert = BertModel(config)
Example #30
Source File: run_cmrc2019_baseline.py From cmrc2019 with Creative Commons Attribution Share Alike 4.0 International | 5 votes |
def __init__(self, config): super(BertForQuestionAnswering, self).__init__(config) self.bert = BertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 1) self.apply(self.init_bert_weights)