Python pytorch_pretrained_bert.modeling.BertForPreTraining() Examples
The following are 5
code examples of pytorch_pretrained_bert.modeling.BertForPreTraining().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pytorch_pretrained_bert.modeling
, or try the search function
.
Example #1
Source File: convert_tf_checkpoint_to_pytorch.py From Bert-Chinese-Text-Classification-Pytorch with MIT License | 5 votes |
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)
Example #2
Source File: convert_tf_checkpoint_to_pytorch.py From squash-generation with MIT License | 5 votes |
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)
Example #3
Source File: convert_tf_checkpoint_to_pytorch.py From bert_on_stilts with Apache License 2.0 | 5 votes |
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)
Example #4
Source File: convert_tf_checkpoint_to_pytorch.py From KagNet with MIT License | 5 votes |
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)
Example #5
Source File: convert_tf_checkpoint_to_pytorch.py From PPLM with Apache License 2.0 | 5 votes |
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path)