Python keras.utils.generic_utils.CustomObjectScope() Examples
The following are 6
code examples of keras.utils.generic_utils.CustomObjectScope().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.generic_utils
, or try the search function
.
Example #1
Source File: pspnet.py From PSPNet-Keras-tensorflow with MIT License | 6 votes |
def __init__(self, nb_classes, resnet_layers, input_shape, weights): self.input_shape = input_shape self.num_classes = nb_classes json_path = join("weights", "keras", weights + ".json") h5_path = join("weights", "keras", weights + ".h5") if 'pspnet' in weights: if os.path.isfile(json_path) and os.path.isfile(h5_path): print("Keras model & weights found, loading...") with CustomObjectScope({'Interp': layers.Interp}): with open(json_path) as file_handle: self.model = model_from_json(file_handle.read()) self.model.load_weights(h5_path) else: print("No Keras model & weights found, import from npy weights.") self.model = layers.build_pspnet(nb_classes=nb_classes, resnet_layers=resnet_layers, input_shape=self.input_shape) self.set_npy_weights(weights) else: print('Load pre-trained weights') self.model = load_model(weights)
Example #2
Source File: RecognitionThread.py From TUT-live-age-estimator with MIT License | 6 votes |
def initialize_celeb(self): print("Initializing celebrity network...") with CustomObjectScope({'relu6': keras.layers.ReLU(6.), 'DepthwiseConv2D': keras.layers.DepthwiseConv2D, 'lifted_struct_loss': lifted_struct_loss, 'triplet_loss': triplet_loss}): self.siameseNet = keras.models.load_model(os.path.join(self.siamesepath, "feature_model.h5")) self.siameseNet._make_predict_function() ##### Read celebrity features celebrity_features = self.siamesepath + os.sep + "features_" + self.celeb_dataset + ".h5" print("Reading celebrity data from {}...".format(celebrity_features)) with h5py.File(celebrity_features, "r") as h5: celeb_features = np.array(h5["features"]).astype(np.float32) self.path_ends = list(h5["path_ends"]) self.celeb_files = [os.path.join(self.visualization_path, s.decode("utf-8")) for s in self.path_ends] print("Building index...") self.celeb_index = faiss.IndexFlatL2(celeb_features.shape[1]) self.celeb_index.add(celeb_features)
Example #3
Source File: deephlapan_main.py From deephlapan with GNU General Public License v2.0 | 5 votes |
def run_model(i,X_test): score = np.zeros((5, len(X_test))) with CustomObjectScope({'Attention': Attention}): model=load_model(curDir+ 'model/binding_model' + str(i+1)+ '.hdf5') score[i,:] =np.squeeze(model.predict_proba(X_test)) return score[i,:]
Example #4
Source File: deephlapan_main.py From deephlapan with GNU General Public License v2.0 | 5 votes |
def run_model1(i,X_test): score1 = np.zeros((5, len(X_test))) with CustomObjectScope({'Attention': Attention}): model1=load_model(curDir+ 'model/immunogenicity_model' + str(i+1)+ '.hdf5') score1[i,:]=np.squeeze(model1.predict_proba(X_test)) return score1[i,:]
Example #5
Source File: model.py From Walk-Assistant with GNU General Public License v3.0 | 5 votes |
def load_model(self): global Graph # multiprocess-able config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.3 set_session(tf.Session(config=config)) # model.99-0.98.h5 files = glob.glob('models/{}/model.*.h5'.format(self.model_name)) if len(files) == 0: print('Trained model not found from "models/{}/model.*.h5"'.format(self.model_name)) print('Building new model because model file not found...') return self.build_model(self.kernel, self.stride) last_file = max(files, key=os.path.getctime) file_name = last_file.replace('\\', '/').split('/')[-1].replace('model.', '').replace('.h5', '') self.epoch = int(file_name.split('-')[0]) acc = float(file_name.split('-')[1]) with CustomObjectScope({'relu6': tf.nn.relu6, 'DepthwiseConv2D': keras.layers.DepthwiseConv2D, 'tf': tf}): model = load_model(last_file) model.summary() Graph = tf.get_default_graph() print('Loaded last model - {}, epoch: {}, acc: {}'.format(last_file, self.epoch, acc)) return model
Example #6
Source File: RecognitionThread.py From TUT-live-age-estimator with MIT License | 4 votes |
def __init__(self, parent, params): print("Initializing recognition thread...") threading.Thread.__init__(self) self.parent = parent ##### Initialize aligners for face alignment. aligner_path = params.get("recognition", "aligner") aligner_targets_path = params.get("recognition", "aligner_targets") self.aligner = keras.models.load_model(aligner_path) self.aligner._make_predict_function() self.aligner_input_shape = (self.aligner.input_shape[2], self.aligner.input_shape[1]) # load targets aligner_targets = np.loadtxt(aligner_targets_path) left_eye = (aligner_targets[36] + aligner_targets[39]) / 2 right_eye = (aligner_targets[42] + aligner_targets[45]) / 2 nose = aligner_targets[30] left_mouth = aligner_targets[48] right_mouth = aligner_targets[54] # Dlib order #self.shape_targets = np.stack((left_eye, left_mouth, nose, right_eye, right_mouth)) # CNN order self.shape_targets = np.stack((left_eye, right_eye, nose, left_mouth, right_mouth)) ##### Initialize networks for Age, Gender and Expression ##### 1. AGE, GENDER, SMILE MULTITASK print("Initializing multitask network...") multitaskpath = params.get("recognition", "multitask_folder") with CustomObjectScope({'relu6': keras.layers.ReLU(6.), 'DepthwiseConv2D': keras.layers.DepthwiseConv2D}): self.multiTaskNet = keras.models.load_model(os.path.join(multitaskpath, 'model.h5')) self.multiTaskNet._make_predict_function() ##### Read class names self.expressions = {int(key): val for key, val in params['expressions'].items()} # convert string key to int self.minDetections = int(params.get("recognition", "mindetections")) ##### 2. CELEBRITY self.siamesepaths = params['celebmodels'] self.siamesepath = self.siamesepaths["0"] self.celeb_dataset = params.get("recognition", "celeb_dataset") self.visualization_path = params.get("recognition", "visualization_path") self.initialize_celeb() # Starting the thread self.switching_model = False self.recognition_running = False print("Recognition thread started...")