Python vgg.VGG16 Examples
The following are 2
code examples of vgg.VGG16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
vgg
, or try the search function
.
Example #1
Source File: RUN.py From SSD-variants with MIT License | 5 votes |
def __init__(self, n_classes): super(RUN300, self).__init__() self.n_classes = n_classes self.Base = VGG16() self.Extra = nn.Sequential(OrderedDict([ ('extra1_1', nn.Conv2d(1024, 256, 1)), ('extra1_2', nn.Conv2d(256, 512, 3, padding=1, stride=2)), ('extra2_1', nn.Conv2d(512, 128, 1)), ('extra2_2', nn.Conv2d(128, 256, 3, padding=1, stride=2)), ('extra3_1', nn.Conv2d(256, 128, 1)), ('extra3_2', nn.Conv2d(128, 256, 3)), ('extra4_1', nn.Conv2d(256, 128, 1)), ('extra4_2', nn.Conv2d(128, 256, 3))])) self.pred_layers = ['conv4_3', 'conv7', 'extra1_2', 'extra2_2', 'extra3_2','extra4_2'] n_channels = [512, 1024, 512, 256, 256, 256] self.L2Norm = nn.ModuleList([L2Norm(512, 20)]) self.l2norm_layers = ['conv4_3'] # Multi-Way Residual Blocks self.ResBlocks = nn.ModuleList() for i in range(len(n_channels) - 1): self.ResBlocks.append( ThreeWay(n_channels[i], n_channels[i+1], self.config['grids'][i], self.config['grids'][i+1], out_channels=256)) self.ResBlocks.append(TwoWay(n_channels[-1], out_channels=256)) # Unified Prediction Module n_boxes = len(self.config['aspect_ratios']) + 1 #self.Loc = nn.Conv2d(256, n_boxes * 4, 3, padding=1) #self.Conf = nn.Conv2d(256, n_boxes * (self.n_classes+1), 3, padding=1) self.Loc = nn.Sequential( nn.Conv2d(256, 256, 1), nn.ReLU(inplace=True), nn.Conv2d(256, n_boxes * 4, 3, padding=1)) self.Conf = nn.Sequential( nn.Conv2d(256, 256, 1), nn.ReLU(inplace=True), nn.Conv2d(256, n_boxes * (self.n_classes+1), 3, padding=1))
Example #2
Source File: RRC.py From SSD-variants with MIT License | 4 votes |
def __init__(self, n_classes=1): super().__init__() self.n_classes = n_classes self.rolling_times = 4 self.rolling_ratio = 0.075 self.Base = VGG16() self.Extra = nn.Sequential(OrderedDict([ ('extra1_1', nn.Conv2d(1024, 256, 1)), ('extra1_2', nn.Conv2d(256, 256, 3, padding=1, stride=2)), ('extra2_1', nn.Conv2d(256, 128, 1)), ('extra2_2', nn.Conv2d(128, 256, 3, padding=1, stride=2)), ('extra3_1', nn.Conv2d(256, 128, 1)), ('extra3_2', nn.Conv2d(128, 256, 3, padding=1, stride=2))])) self.pred_layers = ['conv4_3', 'conv7', 'extra1_2', 'extra2_2', 'extra3_2'] self.L2Norm = nn.ModuleList([L2Norm(512, 20)]) self.l2norm_layers = ['conv4_3'] # intermediate layers self.Inter = nn.ModuleList([ nn.Sequential(nn.Conv2d(512, 256, 3, padding=1), nn.ReLU(inplace=True)) nn.Sequential(nn.Conv2d(1024, 256, 3, padding=1), nn.ReLU(inplace=True)) nn.Sequential(), nn.Sequential(), nn.Sequential()]) n_channels = [256, 256, 256, 256, 256] # Recurrent Rolling self.RollLeft = nn.ModuleList([]) self.RollRight = nn.ModuleList([]) self.Roll = nn.ModuleList([]) for i in range(len(n_channels)): n_out = int(n_channels[i] * self.rolling_ratio) if i > 0: self.RollLeft.append( nn.Sequential( nn.Conv2d(n_channels[i-1], n_out, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, ceil_mode=True))) if i < len(n_channels) - 1: self.RollRight.append( nn.Sequential( nn.Conv2d(n_channels[i+1], n_out, 1), nn.Relu(inplace=True), nn.ConvTranspose2d(n_out, n_out, kernel_size=4, stride=2, padding=1))) n_out = n_out * (int(i>0) + int(i<len(n_channels)-1)) self.Roll.append(nn.Sequential( nn.Conv2d(n_channels[i] + n_out, n_channels[i], 1), nn.ReLU(inplace=True))) # Prediction self.Loc = nn.ModuleList([]) self.Conf = nn.ModuleList([]) for i in range(len(n_channels)): n_boxes = len(self.config['aspect_ratios'][i]) + 1 self.Loc.append(nn.Conv2d(n_channels[i], n_boxes * 4, 3, padding=1)) self.Conf.append(nn.Conv2d(n_channels[i], n_boxes * (self.n_classes + 1), 3, padding=1))