Python numpy.seterr() Examples

The following are 30 code examples of numpy.seterr(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: test_core.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #2
Source File: test_core.py    From lambda-packs with MIT License 6 votes vote down vote up
def setUp(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #3
Source File: _distn_infrastructure.py    From lambda-packs with MIT License 6 votes vote down vote up
def _entropy(self, *args):
        def integ(x):
            val = self._pdf(x, *args)
            return entr(val)

        # upper limit is often inf, so suppress warnings when integrating
        olderr = np.seterr(over='ignore')
        h = integrate.quad(integ, self.a, self.b)[0]
        np.seterr(**olderr)

        if not np.isnan(h):
            return h
        else:
            # try with different limits if integration problems
            low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
            if np.isinf(self.b):
                upper = upp
            else:
                upper = self.b
            if np.isinf(self.a):
                lower = low
            else:
                lower = self.a
            return integrate.quad(integ, lower, upper)[0] 
Example #4
Source File: test_core.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def setup(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #5
Source File: test_core.py    From recruit with Apache License 2.0 6 votes vote down vote up
def setup(self):
        # Base data definition.
        x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #6
Source File: evaluation.py    From few with GNU General Public License v3.0 6 votes vote down vote up
def evaluate(self,n, features, stack_float, stack_bool,labels=None):
        """evaluate node in program"""
        np.seterr(all='ignore')
        if len(stack_float) >= n.arity['f'] and len(stack_bool) >= n.arity['b']:
            if n.out_type == 'f':
                stack_float.append(
                    self.safe(self.eval_dict[n.name](n,features,stack_float,
                                                     stack_bool,labels)))
                if (np.isnan(stack_float[-1]).any() or
                    np.isinf(stack_float[-1]).any()):
                    print("problem operator:",n)
            else:
                stack_bool.append(self.safe(self.eval_dict[n.name](n,features,
                                                                   stack_float,
                                                                   stack_bool,
                                                                   labels)))
                if np.isnan(stack_bool[-1]).any() or np.isinf(stack_bool[-1]).any():
                    print("problem operator:",n) 
Example #7
Source File: test_core.py    From Computable with MIT License 6 votes vote down vote up
def setUp (self):
        "Base data definition."
        x = np.array([1., 1., 1., -2., pi / 2.0, 4., 5., -10., 10., 1., 2., 3.])
        y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
        a10 = 10.
        m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
        m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1]
        xm = masked_array(x, mask=m1)
        ym = masked_array(y, mask=m2)
        z = np.array([-.5, 0., .5, .8])
        zm = masked_array(z, mask=[0, 1, 0, 0])
        xf = np.where(m1, 1e+20, x)
        xm.set_fill_value(1e+20)
        self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #8
Source File: basic_stats_generator_test.py    From data-validation with Apache License 2.0 6 votes vote down vote up
def test_basic_stats_generator_no_runtime_warnings_close_to_max_int(self):
    # input has batches with values that are slightly smaller than the maximum
    # integer value.
    less_than_max_int_value = np.iinfo(np.int64).max - 1
    batches = ([
        pa.RecordBatch.from_arrays([pa.array([[less_than_max_int_value]])],
                                   ['a'])
    ] * 2)
    generator = basic_stats_generator.BasicStatsGenerator()
    old_nperr = np.geterr()
    np.seterr(over='raise')
    accumulators = [
        generator.add_input(generator.create_accumulator(), batch)
        for batch in batches
    ]
    generator.merge_accumulators(accumulators)
    np.seterr(**old_nperr) 
Example #9
Source File: decorators.py    From ngraph-python with Apache License 2.0 6 votes vote down vote up
def with_error_settings(**new_settings):
    """
    TODO.

    Arguments:
      **new_settings: TODO

    Returns:
    """
    @decorator.decorator
    def dec(f, *args, **kwargs):
        old_settings = np.geterr()

        np.seterr(**new_settings)
        ret = f(*args, **kwargs)

        np.seterr(**old_settings)

        return ret

    return dec 
Example #10
Source File: test_multilabel_average_precision_metric.py    From comb_dist_direct_relex with Apache License 2.0 6 votes vote down vote up
def test_get_metrics(cls):
        np.seterr(divide='ignore', invalid='ignore')

        bins = 1000
        diff = 0.01
        metric = MultilabelAveragePrecision(bins=bins)
        size = [1000, 100]
        pred = Tensor(np.random.uniform(0, 1, size))
        gold = Tensor(np.random.randint(0, 2, size))
        metric.__call__(pred, gold)
        fast_ap = metric.get_metric()  # calls the fast get_metric
        ap = metric.get_metric(reset=True)  # calls the accurate get_metric
        assert (abs(ap - fast_ap)) < diff

        metric.__call__(pred, gold)
        metric.__call__(pred, gold)
        metric.__call__(pred, gold)
        fast_ap = metric.get_metric()
        ap = metric.get_metric(reset=True)
        assert (abs(ap - fast_ap)) < diff 
Example #11
Source File: test_numeric.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #12
Source File: test_umath.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #13
Source File: test_umath.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
        self.olderr = np.seterr(invalid='ignore') 
Example #14
Source File: test_umath.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #15
Source File: rng_mrg.py    From D-VAE with MIT License 5 votes vote down vote up
def perform(self, node, inp, out):
        rstate, size = inp
        o_rstate, o_sample = out
        n_elements = 1
        for s in size:
            n_elements *= s
        if n_elements > M1:
            # The limit is on the C and GPU code. This perform don't
            # have this limit.  But to have all of them behave the
            # same (and have DebugMode don't use too much memory for
            # some rng_mrg tests) I also add this limit here.
            raise ValueError("rng_mrg does not support more then (2**31 -1) samples")

        rstate = numpy.asarray(rstate)  # bring state from GPU if necessary
        if not self.inplace:
            rstate = rstate.copy()

        n_streams, _ = rstate.shape

        rval = numpy.zeros(n_elements, dtype=self.output_type.dtype)

        err_orig = numpy.seterr(over='ignore')
        try:
            for i in xrange(n_elements):
                sample = mrg_next_value(rstate[i % n_streams],
                                        rstate[i % n_streams])
                rval[i] = sample
        finally:
            numpy.seterr(**err_orig)

        # send to GPU if necessary
        o_rstate[0] = node.outputs[0].type.filter(rstate)
        o_sample[0] = node.outputs[1].type.filter(rval.reshape(size)) 
Example #16
Source File: fel.py    From ocelot with GNU General Public License v3.0 5 votes vote down vote up
def beta_opt(self, method='mxie', apply=False, **kwargs):
        if method == 'mxie':
            beta_orig_x, beta_orig_y = self.betax, self.betay
            beta_orig = np.mean([beta_orig_x, beta_orig_y])
            
            fel_copy = deepcopy(self)
            def f(x, method=method):
                fel_copy.betax = fel_copy.betay = x
                fel_copy.eval(method=method)
                return fel_copy.lg3
            
            err_dict = np.geterr()
            np.seterr(all='ignore')
            beta_opt = fmin(f, beta_orig, disp=0, **kwargs)
            np.seterr(**err_dict)
            
        elif method == 'ssy_opt':
            beta_opt = self.beta_opt_calc
        
        else:
            _logger.error('method should be in ["mxie", "ssy_opt"]')
            raise ValueError('method should be in ["mxie", "ssy_opt"]')
            
        if apply:
            self.betax = beta_opt
            self.betay = beta_opt
            self.eval(method)
        else:
            return beta_opt[0] 
Example #17
Source File: test_numeric.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def setup(self):
        self.olderr = np.seterr(invalid='ignore') 
Example #18
Source File: test_umath_complex.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #19
Source File: test_numeric.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_set(self):
        with np.errstate():
            err = np.seterr()
            old = np.seterr(divide='print')
            assert_(err == old)
            new = np.seterr()
            assert_(new['divide'] == 'print')
            np.seterr(over='raise')
            assert_(np.geterr()['over'] == 'raise')
            assert_(new['divide'] == 'print')
            np.seterr(**old)
            assert_(np.geterr() == old) 
Example #20
Source File: test_numeric.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_divide_err(self):
        with np.errstate(divide='raise'):
            try:
                np.array([1.]) / np.array([0.])
            except FloatingPointError:
                pass
            else:
                self.fail()
            np.seterr(divide='ignore')
            np.array([1.]) / np.array([0.]) 
Example #21
Source File: test_numeric.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def test_divide_err(self):
        with np.errstate(divide='raise'):
            try:
                np.array([1.]) / np.array([0.])
            except FloatingPointError:
                pass
            else:
                self.fail()
            np.seterr(divide='ignore')
            np.array([1.]) / np.array([0.]) 
Example #22
Source File: test_numeric.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def test_set(self):
        with np.errstate():
            err = np.seterr()
            old = np.seterr(divide='print')
            self.assertTrue(err == old)
            new = np.seterr()
            self.assertTrue(new['divide'] == 'print')
            np.seterr(over='raise')
            self.assertTrue(np.geterr()['over'] == 'raise')
            self.assertTrue(new['divide'] == 'print')
            np.seterr(**old)
            self.assertTrue(np.geterr() == old) 
Example #23
Source File: test_umath_complex.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #24
Source File: test_old_ma.py    From Computable with MIT License 5 votes vote down vote up
def test_testUfuncRegression(self):
        f_invalid_ignore = ['sqrt', 'arctanh', 'arcsin', 'arccos',
                'arccosh', 'arctanh', 'log', 'log10', 'divide',
                'true_divide', 'floor_divide', 'remainder', 'fmod']
        for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
                'sin', 'cos', 'tan',
                'arcsin', 'arccos', 'arctan',
                'sinh', 'cosh', 'tanh',
                'arcsinh',
                'arccosh',
                'arctanh',
                'absolute', 'fabs', 'negative',
                # 'nonzero', 'around',
                'floor', 'ceil',
                # 'sometrue', 'alltrue',
                'logical_not',
                'add', 'subtract', 'multiply',
                'divide', 'true_divide', 'floor_divide',
                'remainder', 'fmod', 'hypot', 'arctan2',
                'equal', 'not_equal', 'less_equal', 'greater_equal',
                'less', 'greater',
                'logical_and', 'logical_or', 'logical_xor',
                ]:
            try:
                uf = getattr(umath, f)
            except AttributeError:
                uf = getattr(fromnumeric, f)
            mf = getattr(np.ma, f)
            args = self.d[:uf.nin]
            with np.errstate():
                if f in f_invalid_ignore:
                    np.seterr(invalid='ignore')
                if f in ['arctanh', 'log', 'log10']:
                    np.seterr(divide='ignore')
                ur = uf(*args)
                mr = mf(*args)
            self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
            self.assertTrue(eqmask(ur.mask, mr.mask)) 
Example #25
Source File: test_umath_complex.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
        self.olderr = np.seterr(invalid='ignore') 
Example #26
Source File: test_core.py    From Computable with MIT License 5 votes vote down vote up
def test_fix_invalid(self):
        "Checks fix_invalid."
        with np.errstate():
            np.seterr(invalid='ignore')
            data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1])
            data_fixed = fix_invalid(data)
            assert_equal(data_fixed._data, [data.fill_value, 0., 1.])
            assert_equal(data_fixed._mask, [1., 0., 1.]) 
Example #27
Source File: test_umath_complex.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.olderr) 
Example #28
Source File: test_core.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.err_status) 
Example #29
Source File: test_core.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
        # Base data definition.
        self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
                  array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
        self.err_status = np.geterr()
        np.seterr(divide='ignore', invalid='ignore') 
Example #30
Source File: test_core.py    From Computable with MIT License 5 votes vote down vote up
def tearDown(self):
        np.seterr(**self.err_status)