Python keras.layers.convolutional.UpSampling3D() Examples
The following are 10
code examples of keras.layers.convolutional.UpSampling3D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers.convolutional
, or try the search function
.
Example #1
Source File: MSnetworks.py From CNNArt with Apache License 2.0 | 5 votes |
def fUpSample(up_in, factor, method='repeat'): factor = int(np.round(1 / factor)) if method == 'repeat': up_out = UpSampling3D(size=(factor, factor, factor), data_format='channels_first')(up_in) #else: use inteporlation #up_out = scaling.fscalingLayer3D(up_in, factor, [up_in._keras_shape[2],up_in._keras_shape[3],up_in._keras_shape[4]]) return up_out
Example #2
Source File: base_networks.py From Recursive-Cascaded-Networks with MIT License | 5 votes |
def build(self, img1, img2): ''' img1, img2, flow : tensor of shape [batch, X, Y, Z, C] ''' concatImgs = tf.concat([img1, img2], 4, 'concatImgs') conv1 = convolveLeakyReLU( 'conv1', concatImgs, self.encoders[0], 3, 2) # 64 * 64 * 64 conv2 = convolveLeakyReLU( 'conv2', conv1, self.encoders[1], 3, 2) # 32 * 32 * 32 conv3 = convolveLeakyReLU( 'conv3', conv2, self.encoders[2], 3, 2) # 16 * 16 * 16 conv4 = convolveLeakyReLU( 'conv4', conv3, self.encoders[3], 3, 2) # 8 * 8 * 8 net = convolveLeakyReLU('decode4', conv4, self.decoders[0], 3, 1) net = tf.concat([UpSampling3D()(net), conv3], axis=-1) net = convolveLeakyReLU('decode3', net, self.decoders[1], 3, 1) net = tf.concat([UpSampling3D()(net), conv2], axis=-1) net = convolveLeakyReLU('decode2', net, self.decoders[2], 3, 1) net = tf.concat([UpSampling3D()(net), conv1], axis=-1) net = convolveLeakyReLU('decode1', net, self.decoders[3], 3, 1) net = convolveLeakyReLU('decode1_1', net, self.decoders[4], 3, 1) net = tf.concat([UpSampling3D()(net), concatImgs], axis=-1) net = convolveLeakyReLU('decode0', net, self.decoders[5], 3, 1) if len(self.decoders) == 8: net = convolveLeakyReLU('decode0_1', net, self.decoders[6], 3, 1) net = convolve( 'flow', net, self.decoders[-1], 3, 1, weights_init=normal(stddev=1e-5)) return { 'flow': net * self.flow_multiplier }
Example #3
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #4
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #5
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #6
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #7
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #8
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #9
Source File: convolutional_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_upsampling_3d(): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: # tf inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test layer_test(convolutional.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = convolutional.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) outputs = layer(K.variable(inputs)) np_output = K.eval(outputs) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) assert_allclose(np_output, expected_out)
Example #10
Source File: 3DUNet_train_generator.py From Kaggle-DSB with MIT License | 4 votes |
def unet_model(): inputs = Input(shape=(1, max_slices, img_size, img_size)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv3) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) up5 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv3], mode='concat', concat_axis=1) conv5 = SpatialDropout3D(dropout_rate)(up5) conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5) conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5) up6 = merge([UpSampling3D(size=(2, 2, 2))(conv5), conv2], mode='concat', concat_axis=1) conv6 = SpatialDropout3D(dropout_rate)(up6) conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6) conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6) up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1) conv7 = SpatialDropout3D(dropout_rate)(up7) conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7) conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7) conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(conv7) model = Model(input=inputs, output=conv8) model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef]) return model