Python tqdm.auto.tqdm.auto() Examples
The following are 11
code examples of tqdm.auto.tqdm.auto().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tqdm.auto.tqdm
, or try the search function
.
Example #1
Source File: readwrite.py From scanpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _download(url: str, path: Path): try: import ipywidgets from tqdm.auto import tqdm except ModuleNotFoundError: from tqdm import tqdm from urllib.request import urlretrieve path.parent.mkdir(parents=True, exist_ok=True) with tqdm(unit='B', unit_scale=True, miniters=1, desc=path.name) as t: def update_to(b=1, bsize=1, tsize=None): if tsize is not None: t.total = tsize t.update(b * bsize - t.n) try: urlretrieve(url, str(path), reporthook=update_to) except Exception: # Make sure file doesn’t exist half-downloaded if path.is_file(): path.unlink() raise
Example #2
Source File: estimation.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, k: int = 10, return_value: str = 'k_skewness', hub_size: float = 2., metric='euclidean', store_k_neighbors: bool = False, store_k_occurrence: bool = False, algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, verbose: int = 0, n_jobs: int = 1, random_state=None, shuffle_equal: bool = True): self.k = k self.return_value = return_value self.hub_size = hub_size self.metric = metric self.store_k_neighbors = store_k_neighbors self.store_k_occurrence = store_k_occurrence self.algorithm = algorithm self.algorithm_params = algorithm_params self.hubness = hubness self.hubness_params = hubness_params self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.shuffle_equal = shuffle_equal
Example #3
Source File: classification.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, n_neighbors: int = 5, weights: str = 'uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size: int = 30, p=2, metric='minkowski', metric_params=None, n_jobs=None, verbose: int = 0, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, algorithm_params=algorithm_params, hubness=hubness, hubness_params=hubness_params, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, verbose=verbose, **kwargs) self.weights = _check_weights(weights)
Example #4
Source File: classification.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, n_jobs=None, **kwargs): super().__init__( radius=radius, algorithm=algorithm, algorithm_params=algorithm_params, hubness=hubness, hubness_params=hubness_params, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label
Example #5
Source File: base.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, n_neighbors=None, radius=None, algorithm='auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None, verbose: int = 0, **kwargs): super().__init__(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs) if algorithm_params is None: n_candidates = 1 if hubness is None else 100 algorithm_params = {'n_candidates': n_candidates, 'metric': metric} if n_jobs is not None and 'n_jobs' not in algorithm_params: algorithm_params['n_jobs'] = self.n_jobs if 'verbose' not in algorithm_params: algorithm_params['verbose'] = verbose hubness_params = hubness_params if hubness_params is not None else {} if 'verbose' not in hubness_params: hubness_params['verbose'] = verbose self.algorithm_params = algorithm_params self.hubness_params = hubness_params self.hubness = hubness self.verbose = verbose self.kwargs = kwargs
Example #6
Source File: base.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _check_algorithm_metric(self): if self.algorithm not in ['auto', *EXACT_ALG, *ANN_ALG]: raise ValueError("unrecognized algorithm: '%s'" % self.algorithm) if self.algorithm == 'auto': if self.metric == 'precomputed': alg_check = 'brute' elif (callable(self.metric) or self.metric in VALID_METRICS['ball_tree']): alg_check = 'ball_tree' else: alg_check = 'brute' else: alg_check = self.algorithm if callable(self.metric): if self.algorithm in ['kd_tree', *ANN_ALG]: # callable metric is only valid for brute force and ball_tree raise ValueError(f"{self.algorithm} algorithm does not support callable metric '{self.metric}'") elif self.metric not in VALID_METRICS[alg_check]: raise ValueError(f"Metric '{self.metric}' not valid. Use " f"sorted(skhubness.neighbors.VALID_METRICS['{alg_check}']) " f"to get valid options. " f"Metric can also be a callable function.") if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = self.metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p <= 0: raise ValueError("p must be greater than zero for minkowski metric")
Example #7
Source File: nng.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, n_candidates: int = 5, metric: str = 'euclidean', index_dir: str = 'auto', optimize: bool = False, edge_size_for_creation: int = 80, edge_size_for_search: int = 40, num_incoming: int = -1, num_outgoing: int = -1, epsilon: float = 0.1, n_jobs: int = 1, verbose: int = 0): if ngtpy is None: # pragma: no cover raise ImportError(f'Please install the `ngt` package, before using this class.\n' f'$ pip3 install ngt') from None super().__init__(n_candidates=n_candidates, metric=metric, n_jobs=n_jobs, verbose=verbose, ) self.index_dir = index_dir self.optimize = optimize self.edge_size_for_creation = edge_size_for_creation self.edge_size_for_search = edge_size_for_search self.num_incoming = num_incoming self.num_outgoing = num_outgoing self.epsilon = epsilon
Example #8
Source File: tqdm_progress_bar.py From addons with Apache License 2.0 | 4 votes |
def __init__( self, metrics_separator: str = " - ", overall_bar_format: str = "{l_bar}{bar} {n_fmt}/{total_fmt} ETA: " "{remaining}s, {rate_fmt}{postfix}", epoch_bar_format: str = "{n_fmt}/{total_fmt}{bar} ETA: " "{remaining}s - {desc}", metrics_format: str = "{name}: {value:0.4f}", update_per_second: int = 10, leave_epoch_progress: bool = True, leave_overall_progress: bool = True, show_epoch_progress: bool = True, show_overall_progress: bool = True, ): try: # import tqdm here because tqdm is not a required package # for addons import tqdm version_message = "Please update your TQDM version to >= 4.36.1, " "you have version {}. To update, run !pip install -U tqdm" assert tqdm.__version__ >= "4.36.1", version_message.format( tqdm.__version__ ) from tqdm.auto import tqdm self.tqdm = tqdm except ImportError: raise ImportError("Please install tqdm via pip install tqdm") self.metrics_separator = metrics_separator self.overall_bar_format = overall_bar_format self.epoch_bar_format = epoch_bar_format self.leave_epoch_progress = leave_epoch_progress self.leave_overall_progress = leave_overall_progress self.show_epoch_progress = show_epoch_progress self.show_overall_progress = show_overall_progress self.metrics_format = metrics_format # compute update interval (inverse of update per second) self.update_interval = 1 / update_per_second self.last_update_time = time.time() self.overall_progress_tqdm = None self.epoch_progress_tqdm = None self.is_training = False self.num_epochs = None self.logs = None super().__init__()
Example #9
Source File: algorithm.py From spectre with Apache License 2.0 | 4 votes |
def run_simulation_alg(self, alg, start, end, delay_factor=True): from tqdm.auto import tqdm alg.blotter.clear() # get factor data from algorithm run_engine = alg.run_engine data, _ = run_engine(start, end, delay_factor) ticks = self.get_data_ticks(data, start) if len(ticks) == 0: raise ValueError("No data returned, please set `start`, `end` time correctly") data = self.wrap_data(data, DataLoaderFastGetter) # mock CustomAlgorithm alg.run_engine = lambda *args: (self._mocked_data, self._mocked_last) if 'empty_cache_after_run' in alg.__dict__: for eng in alg._engines.values(): eng.empty_cache() gc.collect() torch.cuda.empty_cache() # infer freq delta = min(ticks[1:] - ticks[:-1]) data_freq = delta.resolution_string # loop factor data last_day = None for dt in tqdm(ticks): if self._stop: break # prepare data self.mock_data(data, dt) # if date changed if dt.day != last_day: if last_day is not None: self.fire_market_close(alg) alg.set_datetime(dt) # fire daily data event if data_freq == 'D': self.fire_event(self, EveryBarData) # fire open event if dt.day != last_day: self.fire_market_open(alg) last_day = dt.day # fire intraday data event if data_freq != 'D': alg.blotter.set_price('close') self.fire_event(self, EveryBarData) self.fire_market_close(alg) alg.run_engine = run_engine
Example #10
Source File: random_projection_trees.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 4 votes |
def fit(self, X, y=None) -> RandomProjectionTree: """ Build the annoy.Index and insert data from X. Parameters ---------- X: np.array Data to be indexed y: any Ignored Returns ------- self: RandomProjectionTree An instance of RandomProjectionTree with a built index """ if y is None: X = check_array(X) else: X, y = check_X_y(X, y) self.y_train_ = y self.n_samples_fit_ = X.shape[0] self.n_features_ = X.shape[1] self.X_dtype_ = X.dtype if self.metric == 'minkowski': # for compatibility self.metric = 'euclidean' metric = self.metric if self.metric != 'sqeuclidean' else 'euclidean' self.effective_metric_ = metric annoy_index = annoy.AnnoyIndex(X.shape[1], metric=metric) if self.mmap_dir == 'auto': self.annoy_ = create_tempfile_preferably_in_dir(prefix='skhubness_', suffix='.annoy', directory='/dev/shm') logging.warning(f'The index will be stored in {self.annoy_}. ' f'It will NOT be deleted automatically, when this instance is destructed.') elif isinstance(self.mmap_dir, str): self.annoy_ = create_tempfile_preferably_in_dir(prefix='skhubness_', suffix='.annoy', directory=self.mmap_dir) else: # e.g. None self.mmap_dir = None for i, x in tqdm(enumerate(X), desc='Build RPtree', disable=False if self.verbose else True, ): annoy_index.add_item(i, x.tolist()) annoy_index.build(self.n_trees) if self.mmap_dir is None: self.annoy_ = annoy_index else: annoy_index.save(self.annoy_, ) return self
Example #11
Source File: monitoring.py From xarray-simlab with BSD 3-Clause "New" or "Revised" License | 4 votes |
def __init__(self, frontend="auto", **kwargs): """ Parameters ---------- frontend : {"auto", "console", "gui", "notebook"}, optional Selects a frontend for displaying the progress bar. By default ("auto"), the frontend is chosen by guessing in which environment the simulation is run. The "console" frontend displays an ascii progress bar, while the "gui" frontend is based on matplotlib and the "notebook" frontend is based on ipywidgets. **kwargs : dict, optional Arbitrary keyword arguments for progress bar customization. See https://tqdm.github.io/docs/tqdm/. """ if frontend == "auto": from tqdm.auto import tqdm elif frontend == "console": from tqdm import tqdm elif frontend == "gui": from tqdm.gui import tqdm elif frontend == "notebook": from tqdm.notebook import tqdm else: raise ValueError( f"Frontend argument {frontend!r} not supported. " "Please select one of the following: " ", ".join(["auto", "console", "gui", "notebook"]) ) self.custom_description = False if "desc" in kwargs.keys(): self.custom_description = True self.tqdm = tqdm self.tqdm_kwargs = {"bar_format": "{bar} {percentage:3.0f}% | {desc} "} self.tqdm_kwargs.update(kwargs)