Python tensorflow.compat.v2.int64() Examples
The following are 30
code examples of tensorflow.compat.v2.int64().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v2
, or try the search function
.
Example #1
Source File: imagenet_adversarial.py From armory with MIT License | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict( { "images": { "clean": tfds.features.Tensor( shape=[224, 224, 3], dtype=tf.uint8 ), "adversarial": tfds.features.Tensor( shape=[224, 224, 3], dtype=tf.uint8 ), }, "label": tfds.features.Tensor(shape=(), dtype=tf.int64), } ), supervised_keys=("images", "label"), )
Example #2
Source File: libritts.py From datasets with Apache License 2.0 | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ "speech": tfds.features.Audio( file_format="wav", sample_rate=24000), "text_original": tfds.features.Text(), "text_normalized": tfds.features.Text(), "speaker_id": tf.int64, "chapter_id": tf.int64, "id": tf.string, }), supervised_keys=("text_normalized", "speech"), homepage=_URL, citation=_CITATION, metadata=tfds.core.MetadataDict(sample_rate=24000,), )
Example #3
Source File: librispeech.py From datasets with Apache License 2.0 | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ "speech": tfds.features.Audio(sample_rate=16000), "text": tfds.features.Text( encoder_config=self.builder_config.text_encoder_config), "speaker_id": tf.int64, "chapter_id": tf.int64, "id": tf.string, }), supervised_keys=("speech", "text"), homepage=_URL, citation=_CITATION, metadata=tfds.core.MetadataDict(sample_rate=16000,), )
Example #4
Source File: pet_finder.py From datasets with Apache License 2.0 | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description="Dataset with images from 5 classes (see config name for " "information on the specific class)", features=tfds.features.FeaturesDict({ "image": tfds.features.Image(), "image/filename": tfds.features.Text(), "PetID": tfds.features.Text(), "attributes": {name: tf.int64 for name in _INT_FEATS}, "label": tfds.features.ClassLabel(num_classes=5), }), supervised_keys=("attributes", "label"), homepage="https://www.kaggle.com/c/petfinder-adoption-prediction/data", citation=_CITATION, )
Example #5
Source File: dmlab.py From datasets with Apache License 2.0 | 6 votes |
def _parse_single_image(self, example_proto): """Parses single video from the input tfrecords. Args: example_proto: tfExample proto with a single video. Returns: dict with all frames, positions and actions. """ feature_map = { "image": tf.io.FixedLenFeature(shape=[], dtype=tf.string), "filename": tf.io.FixedLenFeature(shape=[], dtype=tf.string), "label": tf.io.FixedLenFeature(shape=[], dtype=tf.int64), } parse_single = tf.io.parse_single_example(example_proto, feature_map) return parse_single
Example #6
Source File: omniglot.py From datasets with Apache License 2.0 | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ "image": tfds.features.Image(shape=(105, 105, 3), encoding_format="png"), "alphabet": tfds.features.ClassLabel(num_classes=_NUM_ALPHABETS), "alphabet_char_id": tf.int64, "label": tfds.features.ClassLabel(num_classes=_NUM_CLASSES), }), supervised_keys=("image", "label"), homepage=_BASE_URL, citation=_CITATION, )
Example #7
Source File: stateless_test.py From tf-quant-finance with Apache License 2.0 | 6 votes |
def testMultiDimensionalShape(self): """Check that stateless_random_shuffle works with multi-dim shapes.""" for dtype in (tf.int32, tf.int64, tf.float32, tf.float64): input_permutation = tf.constant([[[1], [2], [3]], [[4], [5], [6]]], dtype=dtype) random_shuffle = tff_rnd.stateless_random_shuffle( input_permutation, seed=(1, 42)) random_permutation_first_call = self.evaluate(random_shuffle) random_permutation_next_call = self.evaluate(random_shuffle) input_permutation = self.evaluate(input_permutation) # Check that the dtype is correct np.testing.assert_equal(random_permutation_first_call.dtype, dtype.as_numpy_dtype) # Check that the shuffles are the same np.testing.assert_array_equal(random_permutation_first_call, random_permutation_next_call) # Check that the output shape is correct np.testing.assert_equal(random_permutation_first_call.shape, input_permutation.shape)
Example #8
Source File: stateless_test.py From tf-quant-finance with Apache License 2.0 | 6 votes |
def testOutputIsStatelessSession(self): """Checks that stateless_random_shuffle is stateless across Sessions.""" random_permutation_next_call = None for dtype in (tf.int32, tf.int64, tf.float32, tf.float64): random_permutation = tff_rnd.stateless_random_shuffle( tf.range(10, dtype=dtype), seed=tf.constant((100, 42), tf.int64)) with tf.compat.v1.Session() as sess: random_permutation_first_call = sess.run(random_permutation) if random_permutation_next_call is not None: # Checks that the values are the same across different dtypes np.testing.assert_array_equal(random_permutation_first_call, random_permutation_next_call) with tf.compat.v1.Session() as sess: random_permutation_next_call = sess.run(random_permutation) np.testing.assert_array_equal(random_permutation_first_call, random_permutation_next_call)
Example #9
Source File: stateless_test.py From tf-quant-finance with Apache License 2.0 | 6 votes |
def testOutputIsIndependentOfInputValues(self): """stateless_random_shuffle output is independent of input_tensor values.""" # Generate sorted array of random numbers to control that the result # is independent of `input_tesnor` values np.random.seed(25) random_input = np.random.normal(size=[10]) random_input.sort() for dtype in (tf.int32, tf.int64, tf.float32, tf.float64): # Permutation of a sequence [0, 1, .., 9] random_permutation = tff_rnd.stateless_random_shuffle( tf.range(10, dtype=dtype), seed=(100, 42)) random_permutation = self.evaluate(random_permutation) # Shuffle `random_input` with the same seed random_shuffle_control = tff_rnd.stateless_random_shuffle( random_input, seed=(100, 42)) random_shuffle_control = self.evaluate(random_shuffle_control) # Checks that the generated permutation does not depend on the underlying # values np.testing.assert_array_equal( np.argsort(random_permutation), np.argsort(random_shuffle_control))
Example #10
Source File: stateless_test.py From tf-quant-finance with Apache License 2.0 | 6 votes |
def testOutputIsPermutation(self): """Checks that stateless_random_shuffle outputs a permutation.""" for dtype in (tf.int32, tf.int64, tf.float32, tf.float64): identity_permutation = tf.range(10, dtype=dtype) random_shuffle_seed_1 = tff_rnd.stateless_random_shuffle( identity_permutation, seed=tf.constant((1, 42), tf.int64)) random_shuffle_seed_2 = tff_rnd.stateless_random_shuffle( identity_permutation, seed=tf.constant((2, 42), tf.int64)) # Check that the shuffles are of the correct dtype for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2): np.testing.assert_equal(shuffle.dtype, dtype.as_numpy_dtype) random_shuffle_seed_1 = self.evaluate(random_shuffle_seed_1) random_shuffle_seed_2 = self.evaluate(random_shuffle_seed_2) identity_permutation = self.evaluate(identity_permutation) # Check that the shuffles are different self.assertTrue( np.abs(random_shuffle_seed_1 - random_shuffle_seed_2).max()) # Check that the shuffles are indeed permutations for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2): self.assertAllEqual(set(shuffle), set(identity_permutation))
Example #11
Source File: inner_reshape.py From agents with Apache License 2.0 | 6 votes |
def _reshape_inner_dims( tensor: tf.Tensor, shape: tf.TensorShape, new_shape: tf.TensorShape) -> tf.Tensor: """Reshapes tensor to: shape(tensor)[:-len(shape)] + new_shape.""" tensor_shape = tf.shape(tensor) ndims = shape.rank tensor.shape[-ndims:].assert_is_compatible_with(shape) new_shape_inner_tensor = tf.cast( [-1 if d is None else d for d in new_shape.as_list()], tf.int64) new_shape_outer_tensor = tf.cast( tensor_shape[:-ndims], tf.int64) full_new_shape = tf.concat( (new_shape_outer_tensor, new_shape_inner_tensor), axis=0) new_tensor = tf.reshape(tensor, full_new_shape) new_tensor.set_shape(tensor.shape[:-ndims] + new_shape) return new_tensor
Example #12
Source File: logic_test.py From trax with Apache License 2.0 | 6 votes |
def setUp(self): super(LogicTest, self).setUp() self.array_transforms = [ lambda x: x, # Identity, tf.convert_to_tensor, np.array, lambda x: np.array(x, dtype=np.int32), lambda x: np.array(x, dtype=np.int64), lambda x: np.array(x, dtype=np.float32), lambda x: np.array(x, dtype=np.float64), array_ops.array, lambda x: array_ops.array(x, dtype=tf.int32), lambda x: array_ops.array(x, dtype=tf.int64), lambda x: array_ops.array(x, dtype=tf.float32), lambda x: array_ops.array(x, dtype=tf.float64), ]
Example #13
Source File: array_ops_test.py From trax with Apache License 2.0 | 6 votes |
def testCumProdAndSum(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( array_ops.cumprod(arg, *args, **kwargs), np.cumprod(arg, *args, **kwargs)) self.match( array_ops.cumsum(arg, *args, **kwargs), np.cumsum(arg, *args, **kwargs)) run_test([]) run_test([1, 2, 3]) run_test([1, 2, 3], dtype=float) run_test([1, 2, 3], dtype=np.float32) run_test([1, 2, 3], dtype=np.float64) run_test([1., 2., 3.]) run_test([1., 2., 3.], dtype=int) run_test([1., 2., 3.], dtype=np.int32) run_test([1., 2., 3.], dtype=np.int64) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2)
Example #14
Source File: librispeech_dev_clean_split.py From armory with MIT License | 6 votes |
def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict( { "speech": tfds.features.Audio(), "text": tfds.features.Text( encoder_config=self.builder_config.text_encoder_config ), "speaker_id": tf.int64, "chapter_id": tf.int64, "id": tf.string, "label": tfds.features.ClassLabel(names=_LABELS), } ), supervised_keys=("speech", "label"), homepage=_URL, citation=_CITATION, metadata=tfds.core.MetadataDict(sample_rate=16000,), )
Example #15
Source File: arrays_test.py From trax with Apache License 2.0 | 6 votes |
def _testBinOp(self, a, b, out, f, types=None): a = t2a(tf.convert_to_tensor(value=a, dtype=np.int32)) b = t2a(tf.convert_to_tensor(value=b, dtype=np.int32)) if not isinstance(out, arrays.ndarray): out = t2a(tf.convert_to_tensor(value=out, dtype=np.int32)) if types is None: types = [[np.int32, np.int32, np.int32], [np.int64, np.int32, np.int64], [np.int32, np.int64, np.int64], [np.float32, np.int32, np.float64], [np.int32, np.float32, np.float64], [np.float32, np.float32, np.float32], [np.float64, np.float32, np.float64], [np.float32, np.float64, np.float64]] for a_type, b_type, out_type in types: o = f(a.astype(a_type), b.astype(b_type)) self.assertIs(o.dtype.type, out_type) self.assertAllEqual(out.astype(out_type), o)
Example #16
Source File: extensions.py From trax with Apache License 2.0 | 6 votes |
def _key2seed(a): """Converts an RNG key to an RNG seed. Args: a: an RNG key, an ndarray of shape [] and dtype `np.int64`. Returns: an RNG seed, a tensor of shape [2] and dtype `tf.int32`. """ def int64_to_int32s(a): """Converts an int64 tensor of shape [] to an int32 tensor of shape [2].""" a = tf.cast(a, tf.uint64) fst = tf.cast(a, tf.uint32) snd = tf.cast( tf.bitwise.right_shift(a, tf.constant(32, tf.uint64)), tf.uint32) a = [fst, snd] a = tf.nest.map_structure(lambda x: tf.cast(x, tf.int32), a) a = tf.stack(a) return a return int64_to_int32s(a.data)
Example #17
Source File: math_ops.py From trax with Apache License 2.0 | 6 votes |
def true_divide(x1, x2): def _avoid_float64(x1, x2): if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64): x1 = tf.cast(x1, dtype=tf.float32) x2 = tf.cast(x2, dtype=tf.float32) return x1, x2 def f(x1, x2): if x1.dtype == tf.bool: assert x2.dtype == tf.bool float_ = dtypes.default_float_type() x1 = tf.cast(x1, float_) x2 = tf.cast(x2, float_) if not dtypes.is_allow_float64(): # tf.math.truediv in Python3 produces float64 when both inputs are int32 # or int64. We want to avoid that when is_allow_float64() is False. x1, x2 = _avoid_float64(x1, x2) return tf.math.truediv(x1, x2) return _bin_op(f, x1, x2)
Example #18
Source File: feature_column_v2_test.py From hub with Apache License 2.0 | 6 votes |
def testDenseFeaturesInKeras(self): features = { "text": np.array(["hello world", "pair-programming"]), } label = np.int64([0, 1]) feature_columns = [ hub.text_embedding_column_v2("text", self.model, trainable=True), ] input_features = dict( text=tf.keras.layers.Input(name="text", shape=[None], dtype=tf.string)) dense_features = tf.keras.layers.DenseFeatures(feature_columns) x = dense_features(input_features) x = tf.keras.layers.Dense(16, activation="relu")(x) logits = tf.keras.layers.Dense(1, activation="linear")(x) model = tf.keras.Model(inputs=input_features, outputs=logits) model.compile( optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"]) model.fit(x=features, y=label, epochs=10) self.assertAllEqual(model.predict(features["text"]).shape, [2, 1])
Example #19
Source File: extensions.py From trax with Apache License 2.0 | 6 votes |
def _seed2key(a): """Converts an RNG seed to an RNG key. Args: a: an RNG seed, a tensor of shape [2] and dtype `tf.int32`. Returns: an RNG key, an ndarray of shape [] and dtype `np.int64`. """ def int32s_to_int64(a): """Converts an int32 tensor of shape [2] to an int64 tensor of shape [].""" a = tf.bitwise.bitwise_or( tf.cast(a[0], tf.uint64), tf.bitwise.left_shift( tf.cast(a[1], tf.uint64), tf.constant(32, tf.uint64))) a = tf.cast(a, tf.int64) return a return tf_np.asarray(int32s_to_int64(a))
Example #20
Source File: input_pipeline.py From models with Apache License 2.0 | 5 votes |
def process_singledoc_dataset(dataset, batch_size, params): """Parses and batches single-doc dataset.""" name_to_features = { "input_ids_a": tf.io.FixedLenFeature([params.len_title], tf.int64), "input_ids_b": tf.io.FixedLenFeature([params.len_passage], tf.int64), "input_mask_b": tf.io.FixedLenFeature([params.len_passage], tf.int64), "segment_ids_b": tf.io.FixedLenFeature([params.len_passage], tf.int64), } decode_fn = lambda record: decode_record(record, name_to_features) dataset = dataset.map( decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) def _select_data_from_record(record): """Filter out features to use for pretraining.""" return { "input_ids": record["input_ids_b"], "input_mask": record["input_mask_b"], "segment_ids": record["segment_ids_b"], "target_ids": record["input_ids_a"], } dataset = dataset.map( _select_data_from_record, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset
Example #21
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def iterator_single_var_loop(ds): s = tf.constant(0, dtype=tf.int64) for e in iter(ds): s = s * 10 + e return s
Example #22
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def dataset_two_vars_loop(ds): s = tf.constant(0, dtype=tf.int64) p = tf.constant(1, dtype=tf.int64) for e in ds: s += e p *= e return s, p
Example #23
Source File: imagenet_adversarial.py From armory with MIT License | 5 votes |
def _generate_examples(self, path): """Yields examples.""" clean_key = "clean" adversarial_key = "adversarial" def _parse(serialized_example): ds_features = { "height": tf.io.FixedLenFeature([], tf.int64), "width": tf.io.FixedLenFeature([], tf.int64), "label": tf.io.FixedLenFeature([], tf.int64), "adv-image": tf.io.FixedLenFeature([], tf.string), "clean-image": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(serialized_example, ds_features) img_clean = tf.io.decode_raw(example["clean-image"], tf.float32) img_adv = tf.io.decode_raw(example["adv-image"], tf.float32) # float values are integers in [0.0, 255.0] for clean and adversarial img_clean = tf.cast(img_clean, tf.uint8) img_clean = tf.reshape(img_clean, (example["height"], example["width"], 3)) img_adv = tf.cast(img_adv, tf.uint8) img_adv = tf.reshape(img_adv, (example["height"], example["width"], 3)) return {clean_key: img_clean, adversarial_key: img_adv}, example["label"] ds = tf.data.TFRecordDataset(filenames=[path]) ds = ds.map(lambda x: _parse(x)) default_graph = tf.compat.v1.keras.backend.get_session().graph ds = tfds.as_numpy(ds, graph=default_graph) for i, (img, label) in enumerate(ds): yield str(i), { "images": img, "label": label, }
Example #24
Source File: input_pipeline.py From models with Apache License 2.0 | 5 votes |
def multidoc_parse_spec(params, training=True): """Gets the mutli-doc tf.Example parsing spec.""" len_p = params.len_passage name_to_features = {} feature_list = ["input_ids", "input_mask", "segment_ids"] for idx in params.passage_list: for feature in feature_list: name_to_features["%s_%s" % (feature, idx)] = tf.io.FixedLenFeature( [len_p], tf.int64) if training: # Cluster title. name_to_features["input_ids_a"] = tf.io.FixedLenFeature([params.len_title], tf.int64) return name_to_features, feature_list
Example #25
Source File: input_pipeline.py From models with Apache License 2.0 | 5 votes |
def decode_sparse_record(record, name_to_features): """Decodes a sparse record to a TensorFlow example.""" example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = tf.sparse.to_dense(t) return example
Example #26
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def iterator_two_vars_loop(ds): s = tf.constant(0, dtype=tf.int64) p = tf.constant(1, dtype=tf.int64) for e in iter(ds): s += e p *= e return s, p
Example #27
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def dataset_loop_with_break(ds): s = tf.constant(0, dtype=tf.int64) for e in ds: s = s * 10 + e if s > 100: break return s
Example #28
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def iterator_resuming_loop(ds): s = tf.constant(0, dtype=tf.int64) itr = iter(ds) for e in itr: s = s * 10 + e break for e in itr: s = s * 10 + e break for e in itr: s = s * 10 + e return s
Example #29
Source File: datasets_test.py From autograph with Apache License 2.0 | 5 votes |
def dataset_loop_with_return(ds): y = tf.constant(0, dtype=tf.int64) for e in ds: y = e return y return y
Example #30
Source File: input_pipeline.py From models with Apache License 2.0 | 5 votes |
def decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example