Python tensorflow.compat.v2.square() Examples
The following are 9
code examples of tensorflow.compat.v2.square().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v2
, or try the search function
.
Example #1
Source File: extensions_test.py From trax with Apache License 2.0 | 5 votes |
def loss_fn(params, inputs, targets): predicted = params[0] * inputs + params[1] loss = tf.reduce_mean(input_tensor=tf.square(predicted - targets)) return tf_np.asarray(loss)
Example #2
Source File: pixelcnn.py From alibi-detect with Apache License 2.0 | 5 votes |
def _init_norm(self): """Set the norm of the weight vector.""" kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.v), axis=self.kernel_norm_axes)) self.g.assign(kernel_norm)
Example #3
Source File: conjugate_gradient_test.py From tf-quant-finance with Apache License 2.0 | 5 votes |
def _rosenbrock(x): """See https://en.wikipedia.org/wiki/Rosenbrock_function.""" term1 = 100 * tf.reduce_sum(tf.square(x[1:] - tf.square(x[:-1]))) term2 = tf.reduce_sum(tf.square(1 - x[:-1])) return term1 + term2
Example #4
Source File: conjugate_gradient_test.py From tf-quant-finance with Apache License 2.0 | 5 votes |
def _mc_cormick(coord): """See https://www.sfu.ca/~ssurjano/mccorm.html.""" x = coord[0] y = coord[1] return tf.sin(x + y) + tf.square(x - y) - 1.5 * x + 2.5 * y + 1
Example #5
Source File: conjugate_gradient_test.py From tf-quant-finance with Apache License 2.0 | 5 votes |
def test_multiple_functions(self): # Define 3 independednt quadratic functions, each with its own minimum. minima = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) func = lambda x: tf.reduce_sum(tf.square(x - minima), axis=1) self._check_algorithm( func=func, start_point=np.zeros_like(minima), expected_argmin=minima)
Example #6
Source File: loss_fns.py From valan with Apache License 2.0 | 5 votes |
def _compute_baseline_loss(advantages, step): # Loss for the baseline, summed over the time dimension. Multiply by 0.5 to # match the standard update rule: # d(loss) / d(baseline) = advantage baseline_cost = .5 * tf.square(advantages) tf.summary.scalar( 'loss/baseline_cost', tf.reduce_mean(baseline_cost), step=step) return baseline_cost
Example #7
Source File: parabolic_equation_stepper_test.py From tf-quant-finance with Apache License 2.0 | 4 votes |
def testEuropeanCallDynamicVol(self): """Price for the European Call option with time-dependent volatility.""" num_equations = 1 # Number of PDE num_grid_points = 1024 # Number of grid points dtype = np.float64 # Build a log-uniform grid s_max = 300. grid = grids.log_uniform_grid(minimums=[0.01], maximums=[s_max], sizes=[num_grid_points], dtype=dtype) # Specify volatilities and interest rates for the options expiry = 1.0 strike = 50.0 # Volatility is of the form `sigma**2(t) = 1 / 6 + 1 / 2 * t**2`. def second_order_coeff_fn(t, location_grid): return [[(1. / 6 + t**2 / 2) * tf.square(location_grid[0]) / 2]] @dirichlet def lower_boundary_fn(t, location_grid): del t, location_grid return 0 @dirichlet def upper_boundary_fn(t, location_grid): del t return location_grid[0][-1] - strike final_values = tf.nn.relu(grid[0] - strike) # Broadcast to the shape of value dimension, if necessary. final_values += tf.zeros([num_equations, num_grid_points], dtype=dtype) # Estimate European call option price estimate = fd_solvers.solve_backward( start_time=expiry, end_time=0, coord_grid=grid, values_grid=final_values, num_steps=None, start_step_count=0, time_step=tf.constant(0.01, dtype=dtype), one_step_fn=crank_nicolson_step(), boundary_conditions=[(lower_boundary_fn, upper_boundary_fn)], values_transform_fn=None, second_order_coeff_fn=second_order_coeff_fn, dtype=dtype)[0] value_grid = self.evaluate(estimate)[0, :] # Get two grid locations (correspond to spot 51.9537332 and 106.25407758, # respectively). loc_1 = 849 # True call option price (obtained using black_scholes_price function) call_price = 12.582092 self.assertAllClose(call_price, value_grid[loc_1], rtol=1e-02, atol=1e-02)
Example #8
Source File: parabolic_equation_stepper_test.py From tf-quant-finance with Apache License 2.0 | 4 votes |
def testCompareExpandedAndNotExpandedPdes(self): """Tests comparing PDEs with expanded derivatives and without. Take equation `u_{t} - [x^2 u]_{xx} + [x u]_{x} = 0`. Expanding the derivatives yields `u_{t} - x^2 u_{xx} - 3x u_{x} - u = 0`. Solve both equations and expect the results to be equal. """ grid = grids.uniform_grid( minimums=[0], maximums=[1], sizes=[501], dtype=tf.float32) xs = grid[0] final_t = 0.1 time_step = 0.001 initial = _reference_pde_initial_cond(xs) # arbitrary def inner_second_order_coeff_fn(t, coord_grid): del t x = coord_grid[0] return [[-tf.square(x)]] def inner_first_order_coeff_fn(t, coord_grid): del t x = coord_grid[0] return [x] result_not_expanded = fd_solvers.solve_forward( start_time=0, end_time=final_t, coord_grid=grid, values_grid=initial, time_step=time_step, inner_second_order_coeff_fn=inner_second_order_coeff_fn, inner_first_order_coeff_fn=inner_first_order_coeff_fn)[0] def second_order_coeff_fn(t, coord_grid): del t x = coord_grid[0] return [[-tf.square(x)]] def first_order_coeff_fn(t, coord_grid): del t x = coord_grid[0] return [-3 * x] def zeroth_order_coeff_fn(t, coord_grid): del t, coord_grid return -1 result_expanded = fd_solvers.solve_forward( start_time=0, end_time=final_t, coord_grid=grid, values_grid=initial, time_step=time_step, second_order_coeff_fn=second_order_coeff_fn, first_order_coeff_fn=first_order_coeff_fn, zeroth_order_coeff_fn=zeroth_order_coeff_fn)[0] self.assertAllClose( result_not_expanded, result_expanded, atol=1e-3, rtol=1e-3)
Example #9
Source File: helpers.py From compression with Apache License 2.0 | 4 votes |
def estimate_tails(func, target, shape, dtype): """Estimates approximate tail quantiles. This runs a simple Adam iteration to determine tail quantiles. The objective is to find an `x` such that: ``` func(x) == target ``` For instance, if `func` is a CDF and the target is a quantile value, this would find the approximate location of that quantile. Note that `func` is assumed to be monotonic. When each tail estimate has passed the optimal value of `x`, the algorithm does 10 additional iterations and then stops. This operation is vectorized. The tensor shape of `x` is given by `shape`, and `target` must have a shape that is broadcastable to the output of `func(x)`. Arguments: func: A callable that computes cumulative distribution function, survival function, or similar. target: The desired target value. shape: The shape of the `tf.Tensor` representing `x`. dtype: The `tf.dtypes.Dtype` of the computation (and the return value). Returns: A `tf.Tensor` representing the solution (`x`). """ with tf.name_scope("estimate_tails"): dtype = tf.as_dtype(dtype) shape = tf.convert_to_tensor(shape, tf.int32) target = tf.convert_to_tensor(target, dtype) def loop_cond(tails, m, v, count): del tails, m, v # unused return tf.reduce_min(count) < 10 def loop_body(tails, m, v, count): with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(tails) loss = abs(func(tails) - target) grad = tape.gradient(loss, tails) m = .5 * m + .5 * grad # Adam mean estimate. v = .9 * v + .1 * tf.square(grad) # Adam variance estimate. tails -= .5 * m / (tf.sqrt(v) + 1e-7) # Start counting when the gradient flips sign (note that this assumes # `tails` is initialized to zero). count = tf.where( tf.math.logical_or(count > 0, tails * grad > 0), count + 1, count) return tails, m, v, count init_tails = tf.zeros(shape, dtype=dtype) init_m = tf.zeros(shape, dtype=dtype) init_v = tf.ones(shape, dtype=dtype) init_count = tf.zeros(shape, dtype=tf.int32) return tf.while_loop( loop_cond, loop_body, (init_tails, init_m, init_v, init_count), back_prop=False)[0]