Python tensorflow.compat.v2.argmax() Examples
The following are 9
code examples of tensorflow.compat.v2.argmax().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v2
, or try the search function
.
Example #1
Source File: td_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): assert self._mode, 'mode must be set for selecting action in actor.' oracle_next_action = env_output.observation[ streetview_constants.ORACLE_NEXT_ACTION] if self._mode == 'train': if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action elif self._loss_type == common.AC_LOSS: action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: # In non-train modes, choose greedily. action_idx = tf.argmax(agent_output.policy_logits, axis=-1) # Return ActorAction and the action to be passed to the env step function. return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int( oracle_next_action.numpy())), action_idx.numpy()
Example #2
Source File: ndh_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) assert self._mode, 'mode must be set.' if self._mode == 'train': if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action_idx elif self._loss_type == common.AC_LOSS: # Choose next pano from probability distribution over next panos action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: raise ValueError('Unsupported loss type {}'.format(self._loss_type)) else: # In non-train modes, choose greedily. action_idx = tf.argmax(agent_output.policy_logits, axis=-1) action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val.numpy())
Example #3
Source File: r2r_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) assert self._mode, 'mode must be set.' if self._mode == 'train': if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action_idx elif self._loss_type == common.AC_LOSS: # Choose next pano from probability distribution over next panos action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: raise ValueError('Unsupported loss type {}'.format(self._loss_type)) else: # In non-train modes, choose greedily. action_idx = tf.argmax(agent_output.policy_logits, axis=-1) action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val.numpy())
Example #4
Source File: math_ops.py From trax with Apache License 2.0 | 5 votes |
def argmax(a, axis=None): return _argminmax(tf.argmax, a, axis)
Example #5
Source File: util_test.py From language with Apache License 2.0 | 5 votes |
def config_model_evaluation(self, model, labels_ph, params=None): model.accuracy = tf1.metrics.accuracy( tf.argmax(input=model.labels, axis=1), tf.argmax(input=model.predicted_y.tf, axis=1)) model.top_labels = util.labels_of_top_ranked_predictions_in_batch( model.labels, model.predicted_y.tf) model.precision_at_one = tf1.metrics.mean(model.top_labels) model.evaluations = { "accuracy": model.accuracy, "precision@1": model.precision_at_one }
Example #6
Source File: gumbel_softmax.py From agents with Apache License 2.0 | 5 votes |
def convert_to_one_hot(self, samples): return tf.one_hot( tf.argmax(samples, axis=-1), self.distribution.event_size, dtype=self._output_dtype)
Example #7
Source File: uniform_noise.py From compression with Apache License 2.0 | 5 votes |
def _quantization_offset(self): # Picks the "peakiest" of the component quantization offsets. offsets = helpers.quantization_offset(self.components_distribution) rank = self.batch_shape.rank transposed_offsets = tf.transpose(offsets, [rank] + list(range(rank))) component = tf.argmax(self.log_prob(transposed_offsets), axis=0) return tf.gather(offsets, component, axis=-1, batch_dims=rank)
Example #8
Source File: language_reward_net.py From valan with Apache License 2.0 | 5 votes |
def predict_class(self, text_token_ids, action_panos): """Takes in an instruction and action and returns classifier outputs. Args: text_token_ids: Tensor of token indices for the input instruction. action_panos: Tensor of concatenated image panoramas. Returns: (class_outputs, predictions): Output of last layer of MLP and prediction. """ text_enc_outputs, current_lstm_state = self.encode_instruction( text_token_ids) lstm_output, next_lstm_state = self.encode_action(current_lstm_state, action_panos) lstm_output = tf.expand_dims(lstm_output, axis=1) batch_size = text_enc_outputs.shape[0] # c_text has shape [batch_size, 1, self._text_attention_size] c_text = self._text_attention([ self._text_attention_project_hidden(lstm_output), self._text_attention_project_text(text_enc_outputs) ]) # convert ListWrapper output of next_lstm_state to tuples result_state = [] for one_state in next_lstm_state: result_state.append((one_state[0], one_state[1])) hidden_state = lstm_output c_visual = self._visual_attention([ self._visual_attention_project_ctext(c_text), self._visual_attention_project_feature(action_panos), ]) input_feature = tf.concat([hidden_state, c_text, c_visual], axis=2) class_outputs = self._mlp_layer(input_feature) class_outputs = tf.reshape(class_outputs, (batch_size, 2)) predictions = tf.argmax(class_outputs, axis=-1) return (class_outputs, predictions)
Example #9
Source File: language_reward_net.py From valan with Apache License 2.0 | 5 votes |
def accuracy(self, true_labels, predictions): """Takes in predictions and true labels and returns accuracy. Args: true_labels: a tensor of shape [batch_size, n_classes] predictions: a tensor of shape [batch_size, 1]. Returns: loss: a scalar cross entropy loss. """ true_labels = tf.keras.backend.argmax(true_labels) metric = tf.keras.metrics.Accuracy() accuracy = metric.update_state(true_labels, predictions) return accuracy