Python tensorflow.compat.v2.string() Examples

The following are 30 code examples of tensorflow.compat.v2.string(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.compat.v2 , or try the search function .
Example #1
Source File: librispeech_dev_clean_split.py    From armory with MIT License 6 votes vote down vote up
def _info(self):
        return tfds.core.DatasetInfo(
            builder=self,
            description=_DESCRIPTION,
            features=tfds.features.FeaturesDict(
                {
                    "speech": tfds.features.Audio(),
                    "text": tfds.features.Text(
                        encoder_config=self.builder_config.text_encoder_config
                    ),
                    "speaker_id": tf.int64,
                    "chapter_id": tf.int64,
                    "id": tf.string,
                    "label": tfds.features.ClassLabel(names=_LABELS),
                }
            ),
            supervised_keys=("speech", "label"),
            homepage=_URL,
            citation=_CITATION,
            metadata=tfds.core.MetadataDict(sample_rate=16000,),
        ) 
Example #2
Source File: feature_column_v2_test.py    From hub with Apache License 2.0 6 votes vote down vote up
def testDenseFeaturesInKeras(self):
    features = {
        "text": np.array(["hello world", "pair-programming"]),
    }
    label = np.int64([0, 1])
    feature_columns = [
        hub.text_embedding_column_v2("text", self.model, trainable=True),
    ]
    input_features = dict(
        text=tf.keras.layers.Input(name="text", shape=[None], dtype=tf.string))
    dense_features = tf.keras.layers.DenseFeatures(feature_columns)
    x = dense_features(input_features)
    x = tf.keras.layers.Dense(16, activation="relu")(x)
    logits = tf.keras.layers.Dense(1, activation="linear")(x)
    model = tf.keras.Model(inputs=input_features, outputs=logits)
    model.compile(
        optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])
    model.fit(x=features, y=label, epochs=10)
    self.assertAllEqual(model.predict(features["text"]).shape, [2, 1]) 
Example #3
Source File: testing_utils.py    From valan with Apache License 2.0 6 votes vote down vote up
def __init__(self, unroll_length=1):
    self._env = MockEnv(state_space_size=4, unroll_length=unroll_length)
    self._agent = MockAgent(unroll_length=unroll_length)
    self._actor_output_spec = common.ActorOutput(
        initial_agent_state=tf.TensorSpec(shape=[5], dtype=tf.float32),
        env_output=self._env.env_spec,
        agent_output=self._agent.agent_spec,
        actor_action=common.ActorAction(
            chosen_action_idx=tf.TensorSpec(
                shape=[unroll_length + 1], dtype=tf.int32),
            oracle_next_action_idx=tf.TensorSpec(
                shape=[unroll_length + 1], dtype=tf.int32)),
        loss_type=tf.TensorSpec(shape=[], dtype=tf.int32),
        info=tf.TensorSpec(shape=[], dtype=tf.string),
    ) 
Example #4
Source File: testing_utils.py    From valan with Apache License 2.0 6 votes vote down vote up
def __init__(self, state_space_size, unroll_length=1):
    self._state_space_size = state_space_size
    # Creates simple dynamics (T stands for transition):
    #   states = [0, 1, ... len(state_space_size - 1)] + [STOP]
    #   actions = [-1, 1]
    #   T(s, a) = s + a  iff (s + a) is a valid state
    #           = STOP   otherwise
    self._action_space = [-1, 1]
    self._current_state = None
    self._env_spec = common.EnvOutput(
        reward=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.float32),
        done=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.bool),
        observation={
            'f1':
                tf.TensorSpec(
                    shape=[unroll_length + 1, 4, 10], dtype=tf.float32),
            'f2':
                tf.TensorSpec(
                    shape=[unroll_length + 1, 7, 10, 2], dtype=tf.float32)
        },
        info=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.string)) 
Example #5
Source File: eval_actor_test.py    From valan with Apache License 2.0 6 votes vote down vote up
def test_run_eval_actor_once(self):
    hparams = {}
    hparams['max_iter'] = 1
    hparams['num_episodes_per_iter'] = 5
    hparams['logdir'] = os.path.join(FLAGS.test_tmpdir, 'model')

    mock_problem = testing_utils.MockProblem(unroll_length=FLAGS.unroll_length)
    agent = mock_problem.get_agent()
    ckpt_manager = _get_ckpt_manager(hparams['logdir'], agent=agent)
    ckpt_manager.save(checkpoint_number=0)

    # Create a no-op gRPC server that responds to Aggregator RPCs.
    server_address = 'unix:/tmp/eval_actor_test_grpc'
    server = grpc.Server([server_address])

    @tf.function(input_signature=[tf.TensorSpec(shape=(), dtype=tf.string)])
    def eval_enqueue(_):
      return []

    server.bind(eval_enqueue, batched=False)

    server.start()

    eval_actor.run_with_aggregator(mock_problem, server_address, hparams) 
Example #6
Source File: utils_test.py    From valan with Apache License 2.0 6 votes vote down vote up
def testReadWriteSpecs(self):
    logdir = FLAGS.test_tmpdir
    specs = {
        'a': tf.TensorSpec(shape=(2, 3), dtype=tf.float32),
        'b': {
            'b_1': tf.TensorSpec(shape=(5,), dtype=tf.string),
            'b_2': tf.TensorSpec(shape=(5, 6), dtype=tf.int32),
        }
    }
    utils.write_specs(logdir, specs)
    # Now read and verify
    specs_read = utils.read_specs(logdir)

    def _check_equal(sp1, sp2):
      self.assertEqual(sp1, sp2)

    tf.nest.map_structure(_check_equal, specs, specs_read) 
Example #7
Source File: dataset.py    From language with Apache License 2.0 6 votes vote down vote up
def placeholder_for_type(context,
                         type_spec,
                         name = None):
  """Produce a Tensorflow placeholder for this type_spec.

  Args:
    context: a NeuralQueryContext
    type_spec: a single type_spec (see tuple_dataset)
    name: a name to use for the placeholder

  Returns:
    a Tensorflow placeholder

    Raises:
      ValueError, if the type_spec is invalid
  """
  if type_spec == str:
    return tf.compat.v1.placeholder(tf.string, shape=[None], name=name)
  elif isinstance(type_spec, str) and context.is_type(type_spec):
    name = name or ('%s_ph' % type_spec)
    return context.placeholder(name, type_spec).tf
  else:
    raise ValueError('bad type spec %r' % type_spec) 
Example #8
Source File: squad.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "id":
                tf.string,
            "title":
                tfds.features.Text(),
            "context":
                tfds.features.Text(),
            "question":
                tfds.features.Text(),
            "answers":
                tfds.features.Sequence({
                    "text": tfds.features.Text(),
                    "answer_start": tf.int32,
                }),
        }),
        # No default supervised_keys (as we have to pass both question
        # and context as input).
        supervised_keys=None,
        homepage="https://rajpurkar.github.io/SQuAD-explorer/",
        citation=_CITATION,
    ) 
Example #9
Source File: libritts.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "speech": tfds.features.Audio(
                file_format="wav", sample_rate=24000),
            "text_original": tfds.features.Text(),
            "text_normalized": tfds.features.Text(),
            "speaker_id": tf.int64,
            "chapter_id": tf.int64,
            "id": tf.string,
        }),
        supervised_keys=("text_normalized", "speech"),
        homepage=_URL,
        citation=_CITATION,
        metadata=tfds.core.MetadataDict(sample_rate=24000,),
    ) 
Example #10
Source File: groove.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    features_dict = {
        "id": tf.string,
        "drummer":
            tfds.features.ClassLabel(
                names=["drummer%d" % i for i in range(1, 11)]),
        "type": tfds.features.ClassLabel(names=["beat", "fill"]),
        "bpm": tf.int32,
        "time_signature": tfds.features.ClassLabel(names=_TIME_SIGNATURES),
        "style": {
            "primary": tfds.features.ClassLabel(names=_PRIMARY_STYLES),
            "secondary": tf.string,
        },
        "midi": tf.string
    }
    if self.builder_config.include_audio:
      features_dict["audio"] = tfds.features.Audio(
          dtype=tf.float32, sample_rate=self.builder_config.audio_rate)
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict(features_dict),
        homepage="https://g.co/magenta/groove-dataset",
        citation=_CITATION,
    ) 
Example #11
Source File: tedlium.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=self.builder_config.description,
        features=tfds.features.FeaturesDict({
            "speech":
                tfds.features.Audio(sample_rate=16000),
            "text":
                tfds.features.Text(),
            "speaker_id":
                tf.string,
            "gender":
                tfds.features.ClassLabel(names=["unknown", "female", "male"]),
            "id":
                tf.string,
        }),
        supervised_keys=("speech", "text"),
        homepage=self.builder_config.url,
        citation=self.builder_config.citation,
        metadata=tfds.core.MetadataDict(sample_rate=16000,),
    ) 
Example #12
Source File: librispeech.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "speech":
                tfds.features.Audio(sample_rate=16000),
            "text":
                tfds.features.Text(
                    encoder_config=self.builder_config.text_encoder_config),
            "speaker_id":
                tf.int64,
            "chapter_id":
                tf.int64,
            "id":
                tf.string,
        }),
        supervised_keys=("speech", "text"),
        homepage=_URL,
        citation=_CITATION,
        metadata=tfds.core.MetadataDict(sample_rate=16000,),
    ) 
Example #13
Source File: dmlab.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _parse_single_image(self, example_proto):
    """Parses single video from the input tfrecords.

    Args:
      example_proto: tfExample proto with a single video.

    Returns:
      dict with all frames, positions and actions.
    """

    feature_map = {
        "image": tf.io.FixedLenFeature(shape=[], dtype=tf.string),
        "filename": tf.io.FixedLenFeature(shape=[], dtype=tf.string),
        "label": tf.io.FixedLenFeature(shape=[], dtype=tf.int64),
    }

    parse_single = tf.io.parse_single_example(example_proto, feature_map)

    return parse_single 
Example #14
Source File: amazon_us_reviews.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "data":
                collections.OrderedDict([
                    ("marketplace", tf.string), ("customer_id", tf.string),
                    ("review_id", tf.string), ("product_id", tf.string),
                    ("product_parent", tf.string), ("product_title", tf.string),
                    ("product_category", tf.string), ("star_rating", tf.int32),
                    ("helpful_votes", tf.int32), ("total_votes", tf.int32),
                    ("vine", tfds.features.ClassLabel(names=["Y", "N"])),
                    ("verified_purchase",
                     tfds.features.ClassLabel(names=["Y", "N"])),
                    ("review_headline", tf.string), ("review_body", tf.string),
                    ("review_date", tf.string)
                ])
        }),
        supervised_keys=None,
        homepage="https://s3.amazonaws.com/amazon-reviews-pds/readme.html",
        citation=_CITATION,
    ) 
Example #15
Source File: pg19.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self):

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'book_text': tfds.features.Text(),
            'book_id': tf.int32,
            'book_title': tf.string,
            'publication_date': tf.string,
            'book_link': tf.string
        }),
        supervised_keys=None,
        homepage='https://github.com/deepmind/pg19',
        citation=_CITATION,
    ) 
Example #16
Source File: opinion_abstracts.py    From datasets with Apache License 2.0 6 votes vote down vote up
def _info(self) -> tfds.core.DatasetInfo:
    config = self.builder_config
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            config.name_key:
                tf.string,
            config.id_key:
                tf.string,
            config.summary_key:
                tf.string,
            config.opinions_key:
                tfds.features.Sequence(
                    tfds.features.FeaturesDict({
                        "key": tf.string,
                        "value": tf.string
                    })),
        }),
        supervised_keys=(config.opinions_key, config.summary_key),
        homepage="http://www.ccs.neu.edu/home/luwang/data.html",
        citation=_CITATION,
    ) 
Example #17
Source File: dementiabank.py    From datasets with Apache License 2.0 5 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'audio': tfds.features.Audio(file_format='mp3', sample_rate=44100),
            'label': tfds.features.ClassLabel(names=['dementia', 'control']),
            'speaker_id': tf.string,
        }),
        supervised_keys=('audio', 'label'),
        homepage='https://dementia.talkbank.org/',
        citation=_CITATION,
    ) 
Example #18
Source File: continuous_batched_test.py    From compression with Apache License 2.0 5 votes vote down vote up
def test_information_bounds(self):
    # `bits(training=True)` should be greater than `bits(training=False)`
    # because it is defined as an upper bound (albeit for infinite data). The
    # actual length of the bit string should always be greater than
    # `bits(training=False)` because range coding is only asymptotically
    # optimal, and because it operates on quantized probabilities.
    for scale in 2 ** tf.linspace(-2., 7., 10):
      noisy = uniform_noise.NoisyNormal(loc=0., scale=scale)
      em = ContinuousBatchedEntropyModel(noisy, 1, compression=True)
      x = noisy.base.sample([10000])
      bits_eval = em.bits(x, training=False)
      bits_training = em.bits(x, training=True)
      bits_compressed = 8 * len(em.compress(x).numpy())
      self.assertGreater(bits_training, .9975 * bits_eval)
      self.assertGreater(bits_compressed, bits_eval) 
Example #19
Source File: continuous_batched_test.py    From compression with Apache License 2.0 5 votes vote down vote up
def test_default_kwargs_throw_error_on_compression(self):
    noisy = uniform_noise.NoisyNormal(loc=.25, scale=10.)
    em = ContinuousBatchedEntropyModel(noisy, 1)
    x = tf.zeros(10)
    with self.assertRaises(RuntimeError):
      em.compress(x)
    s = tf.zeros(10, dtype=tf.string)
    with self.assertRaises(RuntimeError):
      em.decompress(s, [10]) 
Example #20
Source File: movielens.py    From datasets with Apache License 2.0 5 votes vote down vote up
def __init__(
      self,
      format_version: Optional[str] = None,
      table_option: Optional[str] = None,
      download_url: Optional[str] = None,
      parsing_fn: Optional[Callable[
          [str],
          Iterator[Tuple[int, Dict[str, Any]]],
      ]] = None,
      **kwargs
  ) -> None:
    """Constructs a MovieLensConfig.

    Args:
      format_version: a string to identify the format of the dataset, one of
          '_FORMAT_VERSIONS'.
      table_option: a string to identify the table to expose, one of
          '_TABLE_OPTIONS'.
      download_url: a string url for downloading the dataset.
      parsing_fn: a callable for parsing the data.
      **kwargs: keyword arguments forwarded to super.

    Raises:
      ValueError: if format_version is not one of '_FORMAT_VERSIONS' or if
          table_option is not one of '_TABLE_OPTIONS'.
    """
    if format_version not in _FORMAT_VERSIONS:
      raise ValueError('format_version must be one of %s.' % _FORMAT_VERSIONS)
    if table_option not in _TABLE_OPTIONS:
      raise ValueError('table_option must be one of %s.' % _TABLE_OPTIONS)
    super(MovieLensConfig, self).__init__(**kwargs)
    self._format_version = format_version
    self._table_option = table_option
    self._download_url = download_url
    self._parsing_fn = parsing_fn 
Example #21
Source File: census_example_v2.py    From transform with Apache License 2.0 5 votes vote down vote up
def export_serving_model(tf_transform_output, model, output_dir):
  """Exports a keras model for serving.

  Args:
    tf_transform_output: Wrapper around output of tf.Transform.
    model: A keras model to export for serving.
    output_dir: A directory where the model will be exported to.
  """
  # The layer has to be saved to the model for keras tracking purpases.
  model.tft_layer = tf_transform_output.transform_features_layer()

  @tf.function
  def serve_tf_examples_fn(serialized_tf_examples):
    """Serving tf.function model wrapper."""
    feature_spec = RAW_DATA_FEATURE_SPEC.copy()
    feature_spec.pop(LABEL_KEY)
    parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
    transformed_features = model.tft_layer(parsed_features)
    outputs = model(transformed_features)
    classes_names = tf.constant([['0', '1']])
    classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
    return {'classes': classes, 'scores': outputs}

  concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
      tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
  signatures = {'serving_default': concrete_serving_fn}

  # This is required in order to make this model servable with model_server.
  versioned_output_dir = os.path.join(output_dir, '1')
  model.save(versioned_output_dir, save_format='tf', signatures=signatures) 
Example #22
Source File: feature_test.py    From ranking with Apache License 2.0 5 votes vote down vote up
def test_keras_inputs_dynamic_list_shape(self):
    keras_inputs = feature.create_keras_inputs(
        context_feature_columns=self._context_feature_columns,
        example_feature_columns=self._example_feature_columns,
        size_feature_name=None)

    self.assertEqual(keras_inputs['query_length'].shape.as_list(), [None, 1])
    self.assertEqual(keras_inputs['query_length'].dtype, tf.int64)

    self.assertEqual(keras_inputs['utility'].shape.as_list(), [None, None, 1])
    self.assertEqual(keras_inputs['utility'].dtype, tf.float32)

    self.assertEqual(keras_inputs['unigrams'].dtype, tf.string) 
Example #23
Source File: feature_column_v2_test.py    From hub with Apache License 2.0 5 votes vote down vote up
def __init__(self, returns_dict=False):
    embeddings = [
        ("", [0, 0, 0, 0]),  # OOV items are mapped to this embedding.
        ("hello world", [1, 2, 3, 4]),
        ("pair-programming", [5, 5, 5, 5]),
    ]
    keys = tf.constant([item[0] for item in embeddings], dtype=tf.string)
    indices = tf.constant(list(range(len(embeddings))), dtype=tf.int64)
    tbl_init = KeyValueTensorInitializer(keys, indices)
    self.table = HashTable(tbl_init, 0)
    self.weights = tf.Variable(
        list([item[1] for item in embeddings]), dtype=tf.float32)
    self.variables = [self.weights]
    self.trainable_variables = self.variables
    self._returns_dict = returns_dict 
Example #24
Source File: feature_column_v2_test.py    From hub with Apache License 2.0 5 votes vote down vote up
def testMakeParseExampleSpec(self):
    text_column = hub.text_embedding_column_v2(
        "text", self.model, trainable=False)
    parsing_spec = tf.feature_column.make_parse_example_spec([text_column])
    self.assertEqual(parsing_spec,
                     {"text": tf.io.FixedLenFeature([1], dtype=tf.string)}) 
Example #25
Source File: ljspeech.py    From datasets with Apache License 2.0 5 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "id": tf.string,
            "speech": tfds.features.Audio(sample_rate=22050),
            "text": tfds.features.Text(),
            "text_normalized": tfds.features.Text(),
        }),
        supervised_keys=("text_normalized", "speech"),
        homepage=_URL,
        citation=_CITATION,
        metadata=tfds.core.MetadataDict(sample_rate=22050),
    ) 
Example #26
Source File: dataset.py    From language with Apache License 2.0 5 votes vote down vote up
def k_hot_array_from_string_list(context,
                                 typename,
                                 entity_names):
  """Create a numpy array encoding a k-hot set.

  Args:
    context: a NeuralExpressionContext
    typename: type of entity_names
    entity_names: list of names of type typename

  Returns:
    A k-hot-array representation of the set of entity_names. For frozen
    dictionaries, unknown entity names are mapped to the unknown_id of their
    type or discarded if the unknown_value of the type is None. Unknown entity
    names will throw an nql.EntityNameException for non-frozen dictionaries.
    It is possible for this method to return an all-zeros array.
  """
  # Empty string is not a valid entity_name.
  ids = [context.get_id(e, typename) for e in entity_names if e]
  # None is not a valid id.
  valid_ids = [x for x in ids if x is not None]
  max_id = context.get_max_id(typename)
  result = np.zeros((max_id,), dtype='float32')
  if valid_ids:
    result[valid_ids] = 1.
  return result 
Example #27
Source File: dataset.py    From language with Apache License 2.0 5 votes vote down vote up
def spec_as_tf_type(spec):
  """Convert a type_spec to a tf type.

  Args:
    spec: a single specification for tuple_generator_builder

  Returns:
    type specification required by tf.data.Dataset.from_generator
  """
  if spec == str:
    return tf.string
  elif isinstance(spec, int):
    return tf.int32
  else:
    return tf.float32 
Example #28
Source File: imagenet_adversarial.py    From armory with MIT License 5 votes vote down vote up
def _generate_examples(self, path):
        """Yields examples."""

        clean_key = "clean"
        adversarial_key = "adversarial"

        def _parse(serialized_example):
            ds_features = {
                "height": tf.io.FixedLenFeature([], tf.int64),
                "width": tf.io.FixedLenFeature([], tf.int64),
                "label": tf.io.FixedLenFeature([], tf.int64),
                "adv-image": tf.io.FixedLenFeature([], tf.string),
                "clean-image": tf.io.FixedLenFeature([], tf.string),
            }
            example = tf.io.parse_single_example(serialized_example, ds_features)

            img_clean = tf.io.decode_raw(example["clean-image"], tf.float32)
            img_adv = tf.io.decode_raw(example["adv-image"], tf.float32)
            # float values are integers in [0.0, 255.0] for clean and adversarial
            img_clean = tf.cast(img_clean, tf.uint8)
            img_clean = tf.reshape(img_clean, (example["height"], example["width"], 3))
            img_adv = tf.cast(img_adv, tf.uint8)
            img_adv = tf.reshape(img_adv, (example["height"], example["width"], 3))
            return {clean_key: img_clean, adversarial_key: img_adv}, example["label"]

        ds = tf.data.TFRecordDataset(filenames=[path])
        ds = ds.map(lambda x: _parse(x))
        default_graph = tf.compat.v1.keras.backend.get_session().graph
        ds = tfds.as_numpy(ds, graph=default_graph)

        for i, (img, label) in enumerate(ds):
            yield str(i), {
                "images": img,
                "label": label,
            } 
Example #29
Source File: covid19sum.py    From datasets with Apache License 2.0 5 votes vote down vote up
def _info(self) -> tfds.core.DatasetInfo:
    features = {k: tf.string for k in _ADDITIONAL_FEATURES + [_ABSTRACT]}
    features[_BODY_TEXT] = tfds.features.Sequence(
        tfds.features.FeaturesDict({
            _SECTION: tf.string,
            _TEXT: tf.string
        }))
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict(features),
        supervised_keys=(_BODY_TEXT, _ABSTRACT),
        homepage=_HOMEPAGE,
        citation=_CITATION,
    ) 
Example #30
Source File: voxforge.py    From datasets with Apache License 2.0 5 votes vote down vote up
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'audio': tfds.features.Audio(file_format='wav', sample_rate=16000),
            'label': tfds.features.ClassLabel(names=LABELS),
            'speaker_id': tf.string
        }),
        supervised_keys=('audio', 'label'),
        homepage=_HOMEPAGE,
        citation=_CITATION,
    )