Python tensorflow.compat.v2.reduce_min() Examples
The following are 8
code examples of tensorflow.compat.v2.reduce_min().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v2
, or try the search function
.
Example #1
Source File: ndh_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) assert self._mode, 'mode must be set.' if self._mode == 'train': if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action_idx elif self._loss_type == common.AC_LOSS: # Choose next pano from probability distribution over next panos action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: raise ValueError('Unsupported loss type {}'.format(self._loss_type)) else: # In non-train modes, choose greedily. action_idx = tf.argmax(agent_output.policy_logits, axis=-1) action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val.numpy())
Example #2
Source File: mt_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action_idx elif self._loss_type == common.AC_LOSS: # Choose next pano from probability distribution over next panos action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: raise ValueError('Unsupported loss type {}'.format(self._loss_type)) action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val.numpy())
Example #3
Source File: r2r_problem.py From valan with Apache License 2.0 | 6 votes |
def select_actor_action(self, env_output, agent_output): oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) assert self._mode, 'mode must be set.' if self._mode == 'train': if self._loss_type == common.CE_LOSS: # This is teacher-forcing mode, so choose action same as oracle action. action_idx = oracle_next_action_idx elif self._loss_type == common.AC_LOSS: # Choose next pano from probability distribution over next panos action_idx = tfp.distributions.Categorical( logits=agent_output.policy_logits).sample() else: raise ValueError('Unsupported loss type {}'.format(self._loss_type)) else: # In non-train modes, choose greedily. action_idx = tf.argmax(agent_output.policy_logits, axis=-1) action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val.numpy())
Example #4
Source File: array_ops.py From trax with Apache License 2.0 | 5 votes |
def amin(a, axis=None, keepdims=None): return _reduce(tf.reduce_min, a, axis=axis, dtype=None, keepdims=keepdims, promote_int=None, tf_bool_fn=tf.reduce_all, preserve_bool=True) # TODO(wangpeng): Remove this workaround once b/157232284 is fixed
Example #5
Source File: multi_objective_scalarizer.py From agents with Apache License 2.0 | 5 votes |
def call(self, multi_objectives: tf.Tensor) -> tf.Tensor: return tf.reduce_min( (multi_objectives - self._reference_point) * self._weights, axis=1)
Example #6
Source File: multi_objective_scalarizer.py From agents with Apache License 2.0 | 5 votes |
def call(self, multi_objectives: tf.Tensor) -> tf.Tensor: transformed_objectives = tf.maximum( multi_objectives * self._slopes + self._offsets, 0) nonzero_mask = tf.broadcast_to( tf.cast(tf.abs(self._direction) >= self.ALMOST_ZERO, dtype=tf.bool), multi_objectives.shape) return tf.reduce_min( tf.where(nonzero_mask, transformed_objectives / self._direction, multi_objectives.dtype.max), axis=1)
Example #7
Source File: discriminator_problem.py From valan with Apache License 2.0 | 5 votes |
def select_actor_action(self, env_output, agent_output): # Agent_output is unused here. oracle_next_action = env_output.observation[constants.ORACLE_NEXT_ACTION] oracle_next_action_indices = tf.where( tf.equal(env_output.observation[constants.CONN_IDS], oracle_next_action)) oracle_next_action_idx = tf.reduce_min(oracle_next_action_indices) assert self._mode, 'mode must be set.' action_idx = oracle_next_action_idx action_val = env_output.observation[constants.CONN_IDS][action_idx] return common.ActorAction( chosen_action_idx=int(action_idx.numpy()), oracle_next_action_idx=int(oracle_next_action_idx.numpy())), int( action_val)
Example #8
Source File: helpers.py From compression with Apache License 2.0 | 4 votes |
def estimate_tails(func, target, shape, dtype): """Estimates approximate tail quantiles. This runs a simple Adam iteration to determine tail quantiles. The objective is to find an `x` such that: ``` func(x) == target ``` For instance, if `func` is a CDF and the target is a quantile value, this would find the approximate location of that quantile. Note that `func` is assumed to be monotonic. When each tail estimate has passed the optimal value of `x`, the algorithm does 10 additional iterations and then stops. This operation is vectorized. The tensor shape of `x` is given by `shape`, and `target` must have a shape that is broadcastable to the output of `func(x)`. Arguments: func: A callable that computes cumulative distribution function, survival function, or similar. target: The desired target value. shape: The shape of the `tf.Tensor` representing `x`. dtype: The `tf.dtypes.Dtype` of the computation (and the return value). Returns: A `tf.Tensor` representing the solution (`x`). """ with tf.name_scope("estimate_tails"): dtype = tf.as_dtype(dtype) shape = tf.convert_to_tensor(shape, tf.int32) target = tf.convert_to_tensor(target, dtype) def loop_cond(tails, m, v, count): del tails, m, v # unused return tf.reduce_min(count) < 10 def loop_body(tails, m, v, count): with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(tails) loss = abs(func(tails) - target) grad = tape.gradient(loss, tails) m = .5 * m + .5 * grad # Adam mean estimate. v = .9 * v + .1 * tf.square(grad) # Adam variance estimate. tails -= .5 * m / (tf.sqrt(v) + 1e-7) # Start counting when the gradient flips sign (note that this assumes # `tails` is initialized to zero). count = tf.where( tf.math.logical_or(count > 0, tails * grad > 0), count + 1, count) return tails, m, v, count init_tails = tf.zeros(shape, dtype=dtype) init_m = tf.zeros(shape, dtype=dtype) init_v = tf.ones(shape, dtype=dtype) init_count = tf.zeros(shape, dtype=tf.int32) return tf.while_loop( loop_cond, loop_body, (init_tails, init_m, init_v, init_count), back_prop=False)[0]