Python tensorflow.compat.v1.ConfigProto() Examples
The following are 30
code examples of tensorflow.compat.v1.ConfigProto().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v1
, or try the search function
.
Example #1
Source File: trainer.py From meta-dataset with Apache License 2.0 | 6 votes |
def initialize_session(self): """Initializes a tf.Session.""" if ENABLE_TF_OPTIMIZATIONS: self.sess = tf.Session() else: session_config = tf.ConfigProto() rewrite_options = session_config.graph_options.rewrite_options rewrite_options.disable_model_pruning = True rewrite_options.constant_folding = rewrite_options.OFF rewrite_options.arithmetic_optimization = rewrite_options.OFF rewrite_options.remapping = rewrite_options.OFF rewrite_options.shape_optimization = rewrite_options.OFF rewrite_options.dependency_optimization = rewrite_options.OFF rewrite_options.function_optimization = rewrite_options.OFF rewrite_options.layout_optimizer = rewrite_options.OFF rewrite_options.loop_optimization = rewrite_options.OFF rewrite_options.memory_optimization = rewrite_options.NO_MEM_OPT self.sess = tf.Session(config=session_config) # Restore or initialize the variables. self.sess.run(tf.global_variables_initializer()) self.sess.run(tf.local_variables_initializer())
Example #2
Source File: ops.py From super-resolution-videos with The Unlicense | 6 votes |
def set_gpu_fraction(sess=None, gpu_fraction=0.3): """Set the GPU memory fraction for the application. Parameters ---------- sess : a session instance of TensorFlow TensorFlow session gpu_fraction : a float Fraction of GPU memory, (0 ~ 1] References ---------- - `TensorFlow using GPU <https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html>`_ """ print(" tensorlayer: GPU MEM Fraction %f" % gpu_fraction) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) sess = tf.Session(config = tf.ConfigProto(gpu_options = gpu_options)) return sess
Example #3
Source File: ppo2_cnn.py From football with Apache License 2.0 | 6 votes |
def __init__(self, player_config, env_config): player_base.PlayerBase.__init__(self, player_config) self._action_set = (env_config['action_set'] if 'action_set' in env_config else 'default') config = tf.ConfigProto() config.gpu_options.allow_growth = True self._sess = tf.Session(config=config) self._player_prefix = 'player_{}'.format(player_config['index']) stacking = 4 if player_config.get('stacked', True) else 1 policy = player_config.get('policy', 'cnn') self._stacker = ObservationStacker(stacking) with tf.variable_scope(self._player_prefix): with tf.variable_scope('ppo2_model'): policy_fn = build_policy(DummyEnv(self._action_set, stacking), policy) self._policy = policy_fn(nbatch=1, sess=self._sess) _load_variables(player_config['checkpoint'], self._sess, prefix=self._player_prefix + '/')
Example #4
Source File: wmf.py From top-k-rec with GNU General Public License v3.0 | 6 votes |
def __init__(self, k: int, lu: float = 0.01, lv: float = 0.01, a: float = 1, b: float = 0.01) -> None: self.__sn = 'wmf' self.k = k self.lu = lu self.lv = lv self.a = a self.b = b self.tf_config = tf.ConfigProto() self.tf_config.gpu_options.allow_growth=True self.uids = None self.n_users = None self.usm = None self.iids = None self.n_items = None self.ism = None self.n_ratings = None self.u_rated = None self.i_rated = None self.fue = None self.fie = None
Example #5
Source File: L2_Net.py From pyslam with GNU General Public License v3.0 | 6 votes |
def __init__(self, net_name, do_tf_logging=True, flagCS = False): set_tf_logging(do_tf_logging) # from https://kobkrit.com/using-allow-growth-memory-option-in-tensorflow-and-keras-dc8c8081bc96 config = tf.ConfigProto() config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU #config.log_device_placement = True # to log device placement (on which device the operation ran) sess = tf.Session(config=config) set_session(sess) # set this TensorFlow session as the default session for Keras model, model_cen, pix_mean, pix_mean_cen = build_L2_net(net_name) self.flagCS = flagCS self.model = model self.model_cen = model_cen self.pix_mean = pix_mean self.pix_mean_cen = pix_mean_cen
Example #6
Source File: learning_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testTrainWithSessionConfig(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_labels, tf_predictions) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) session_config = tf.ConfigProto(allow_soft_placement=True) loss = learning.train( train_op, None, number_of_steps=300, log_every_n_steps=10, session_config=session_config) self.assertIsNotNone(loss) self.assertLess(loss, .015)
Example #7
Source File: tf.py From RLs with Apache License 2.0 | 5 votes |
def generate_session_config() -> tf.ConfigProto: """ Generate a ConfigProto to use for ML-Agents that doesn't consume all of the GPU memory and allows for soft placement in the case of multi-GPU. """ config = tf.ConfigProto() config.gpu_options.allow_growth = True # For multi-GPU training, set allow_soft_placement to True to allow # placing the operation into an alternative device automatically # to prevent from exceptions if the device doesn't suppport the operation # or the device does not exist config.allow_soft_placement = True return config
Example #8
Source File: run_ppo2.py From football with Apache License 2.0 | 5 votes |
def train(_): """Trains a PPO2 policy.""" vec_env = SubprocVecEnv([ (lambda _i=i: create_single_football_env(_i)) for i in range(FLAGS.num_envs) ], context=None) # Import tensorflow after we create environments. TF is not fork sake, and # we could be using TF as part of environment if one of the players is # controled by an already trained model. import tensorflow.compat.v1 as tf ncpu = multiprocessing.cpu_count() config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=ncpu, inter_op_parallelism_threads=ncpu) config.gpu_options.allow_growth = True tf.Session(config=config).__enter__() ppo2.learn(network=FLAGS.policy, total_timesteps=FLAGS.num_timesteps, env=vec_env, seed=FLAGS.seed, nsteps=FLAGS.nsteps, nminibatches=FLAGS.nminibatches, noptepochs=FLAGS.noptepochs, max_grad_norm=FLAGS.max_grad_norm, gamma=FLAGS.gamma, ent_coef=FLAGS.ent_coef, lr=FLAGS.lr, log_interval=1, save_interval=FLAGS.save_interval, cliprange=FLAGS.cliprange, load_path=FLAGS.load_path)
Example #9
Source File: keras_model.py From DeepPavlov with Apache License 2.0 | 5 votes |
def _config_session(): """ Configure session for particular device Returns: tensorflow.Session """ config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = '0' return tf.Session(config=config)
Example #10
Source File: trainer_lib.py From tensor2tensor with Apache License 2.0 | 5 votes |
def create_session_config(log_device_placement=False, enable_graph_rewriter=False, gpu_mem_fraction=0.95, use_tpu=False, xla_jit_level=tf.OptimizerOptions.OFF, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0): """The TensorFlow Session config to use.""" if use_tpu: graph_options = tf.GraphOptions() else: if enable_graph_rewriter: rewrite_options = rewriter_config_pb2.RewriterConfig() rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON graph_options = tf.GraphOptions(rewrite_options=rewrite_options) else: graph_options = tf.GraphOptions( optimizer_options=tf.OptimizerOptions( opt_level=tf.OptimizerOptions.L1, do_function_inlining=False, global_jit_level=xla_jit_level)) gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction) config = tf.ConfigProto( allow_soft_placement=True, graph_options=graph_options, gpu_options=gpu_options, log_device_placement=log_device_placement, inter_op_parallelism_threads=inter_op_parallelism_threads, intra_op_parallelism_threads=intra_op_parallelism_threads, isolate_session_state=True) return config
Example #11
Source File: sar.py From top-k-rec with GNU General Public License v3.0 | 5 votes |
def __init__(self, k: int, lambda_u: float = 2.5e-3, lambda_i: float = 2.5e-3, lambda_j: float = 2.5e-4, lambda_b: float = 0, lr: float = 1.0e-4, mode: str = 'l2') -> None: self.k = k self.lu = lambda_u self.li = lambda_i self.lj = lambda_j self.lb = lambda_b self.lr = lr self.tf_config = tf.ConfigProto() self.tf_config.gpu_options.allow_growth = True self.uids = None self.iids = None self.data = None self.epoch_sample_limit = None self.n_users = None self.n_items = None self.tr_data = None self.tr_users = None self.__ue = None self.__ie = None self.__ib = None self.__sess = None self.__saver = None self.mode = mode self.pred = None self.obj = None self.solver = None self.fue = None self.fie = None self.fib = None
Example #12
Source File: bpr.py From top-k-rec with GNU General Public License v3.0 | 5 votes |
def __init__(self, k: int, lambda_u: float = 2.5e-3, lambda_i: float = 2.5e-3, lambda_j: float = 2.5e-4, lambda_b: float = 0, lr: float = 1.0e-4, mode: str = 'l2') -> None: self.k = k self.lu = lambda_u self.li = lambda_i self.lj = lambda_j self.lb = lambda_b self.lr = lr self.tf_config = tf.ConfigProto() self.tf_config.gpu_options.allow_growth = True self.uids = None self.iids = None self.data = None self.epoch_sample_limit = None self.n_users = None self.n_items = None self.tr_data = None self.tr_users = None self.__ue = None self.__ie = None self.__ib = None self.__sess = None self.__saver = None self.mode = mode self.pred = None self.obj = None self.solver = None self.fue = None self.fie = None self.fib = None
Example #13
Source File: runner_lib.py From recsim with Apache License 2.0 | 5 votes |
def _set_up(self, eval_mode): """Sets up the runner by creating and initializing the agent.""" # Reset the tf default graph to avoid name collisions from previous runs # before doing anything else. tf.reset_default_graph() self._summary_writer = tf.summary.FileWriter(self._output_dir) if self._episode_log_file: self._episode_writer = tf.io.TFRecordWriter( os.path.join(self._output_dir, self._episode_log_file)) # Set up a session and initialize variables. self._sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self._agent = self._create_agent_fn( self._sess, self._env, summary_writer=self._summary_writer, eval_mode=eval_mode) # type check: env/agent must both be multi- or single-user if self._agent.multi_user and not isinstance( self._env.environment, environment.MultiUserEnvironment): raise ValueError('Multi-user agent requires multi-user environment.') if not self._agent.multi_user and isinstance( self._env.environment, environment.MultiUserEnvironment): raise ValueError('Single-user agent requires single-user environment.') self._summary_writer.add_graph(graph=tf.get_default_graph()) self._sess.run(tf.global_variables_initializer()) self._sess.run(tf.local_variables_initializer())
Example #14
Source File: trainer.py From rex-gym with Apache License 2.0 | 5 votes |
def _train(self, config, env_processes): """Training and evaluation entry point yielding scores. Resolves some configuration attributes, creates environments, graph, and training loop. By default, assigns all operations to the CPU. Args: config: Object providing configurations via attributes. env_processes: Whether to step environments in separate processes. Yields: Evaluation scores. """ tf.reset_default_graph() with config.unlocked: config.network = functools.partial(utility.define_network, config.network, config) config.policy_optimizer = getattr(tf.train, config.policy_optimizer) config.value_optimizer = getattr(tf.train, config.value_optimizer) if config.update_every % config.num_agents: logging.warning('Number of agents should divide episodes per update.') with tf.device('/cpu:0'): agents = self.agents if self.agents is not None else config.num_agents num_agents = 1 if self.playground else agents batch_env = utility.define_batch_env(lambda: self._create_environment(config), num_agents, env_processes) graph = utility.define_simulation_graph(batch_env, config.algorithm, config) loop = self._define_loop(graph, config.logdir, config.update_every * config.max_length, config.eval_episodes * config.max_length) total_steps = int(config.steps / config.update_every * (config.update_every + config.eval_episodes)) # Exclude episode related variables since the Python state of environments is # not checkpointed and thus new episodes start after resuming. saver = utility.define_saver(exclude=(r'.*_temporary/.*',)) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: utility.initialize_variables(sess, saver, config.logdir) for score in loop.run(sess, saver, total_steps): yield score batch_env.close()
Example #15
Source File: recom_ncf_base.py From cornac with Apache License 2.0 | 5 votes |
def _sess_init(self): import tensorflow.compat.v1 as tf config = tf.ConfigProto() config.gpu_options.allow_growth = True self.sess = tf.Session(graph=self.graph, config=config) self.sess.run(self.initializer)
Example #16
Source File: model_executor.py From mesh with Apache License 2.0 | 5 votes |
def train_and_eval(): """Trains and evaluates MeshTensorflow model without TPUEstimator. TODO(lehou): Pack everything nicely as a set of APIs. """ mesh_context = None tf.logging.info('FLAGS.master: {}'.format(FLAGS.master)) resolver = tf.distribute.cluster_resolver.TPUClusterResolver(FLAGS.master) config = tf.ConfigProto() config.allow_soft_placement = True cluster_spec = resolver.cluster_spec() if cluster_spec: config.cluster_def.CopyFrom(cluster_spec.as_cluster_def()) with tf.Session(target=resolver.master(), config=config) as sess: tf.tpu.experimental.initialize_tpu_system(resolver) mesh_context = MeshContext( sess, FLAGS.use_tpu, FLAGS.mesh_shape, unet.get_layout()) for _ in range(FLAGS.num_training_loops): _train_phase(mesh_context, config, resolver.get_master()) _eval_phase(mesh_context, config, resolver.get_master()) if FLAGS.use_tpu: with tf.Session(target=resolver.get_master(), config=config) as sess: sess.run(tpu.shutdown_system()) tf.logging.info('finished.')
Example #17
Source File: op_evaluator.py From tensorboard with Apache License 2.0 | 5 votes |
def _lazily_initialize(self): """Initialize the graph and session, if this has not yet been done.""" # TODO(nickfelt): remove on-demand imports once dep situation is fixed. import tensorflow.compat.v1 as tf with self._initialization_lock: if self._session: return graph = tf.Graph() with graph.as_default(): self.initialize_graph() # Don't reserve GPU because libpng can't run on GPU. config = tf.ConfigProto(device_count={"GPU": 0}) self._session = tf.Session(graph=graph, config=config)
Example #18
Source File: inference.py From PINTO_model_zoo with MIT License | 5 votes |
def _build_session(self): sess_config = tf.ConfigProto() if self.use_xla: sess_config.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_2) return tf.Session(config=sess_config)
Example #19
Source File: fastgen.py From magenta with Apache License 2.0 | 5 votes |
def encode(wav_data, checkpoint_path, sample_length=64000): """Generate an array of encodings from an array of audio. Args: wav_data: Numpy array [batch_size, sample_length] checkpoint_path: Location of the pretrained model. sample_length: The total length of the final wave file, padded with 0s. Returns: encoding: a [mb, 125, 16] encoding (for 64000 sample audio file). """ if wav_data.ndim == 1: wav_data = np.expand_dims(wav_data, 0) batch_size = wav_data.shape[0] # Load up the model for encoding and find the encoding of "wav_data" session_config = tf.ConfigProto(allow_soft_placement=True) session_config.gpu_options.allow_growth = True with tf.Graph().as_default(), tf.Session(config=session_config) as sess: hop_length = Config().ae_hop_length wav_data, sample_length = utils.trim_for_encoding(wav_data, sample_length, hop_length) net = load_nsynth(batch_size=batch_size, sample_length=sample_length) saver = tf.train.Saver() saver.restore(sess, checkpoint_path) encodings = sess.run(net["encoding"], feed_dict={net["X"]: wav_data}) return encodings
Example #20
Source File: util.py From nni with MIT License | 5 votes |
def make_session(config=None, num_cpu=None, make_default=False, graph=None): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) if config is None: config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=config, graph=graph) else: return tf.Session(config=config, graph=graph)
Example #21
Source File: gpt_2.py From gpt2-estimator with MIT License | 5 votes |
def start_tf_sess(): """ Returns a tf.Session w/ config """ config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config)
Example #22
Source File: model_interface.py From tensor2robot with Apache License 2.0 | 5 votes |
def get_session_config(self): """Get the Session tf.ConfigProto for Estimator model."""
Example #23
Source File: train.py From m-phate with GNU General Public License v3.0 | 5 votes |
def build_config(limit_gpu_fraction=0.2, limit_cpu_fraction=10): if limit_gpu_fraction > 0: os.environ["CUDA_VISIBLE_DEVICES"] = "0" gpu_options = GPUOptions( allow_growth=True, per_process_gpu_memory_fraction=limit_gpu_fraction) config = ConfigProto(gpu_options=gpu_options) else: os.environ["CUDA_VISIBLE_DEVICES"] = "" config = ConfigProto(device_count={'GPU': 0}) if limit_cpu_fraction is not None: if limit_cpu_fraction == 0: cpu_count = 1 if limit_cpu_fraction < 0: # -2 gives all CPUs except 1 cpu_count = max( 1, int(os.cpu_count() + limit_cpu_fraction + 1)) elif limit_cpu_fraction < 1: # 0.5 gives 50% of available CPUs cpu_count = max( 1, int(os.cpu_count() * limit_cpu_fraction)) else: # 2 gives 2 CPUs cpu_count = int(limit_cpu_fraction) config.inter_op_parallelism_threads = cpu_count config.intra_op_parallelism_threads = cpu_count os.environ['OMP_NUM_THREADS'] = str(1) os.environ['MKL_NUM_THREADS'] = str(cpu_count) return config
Example #24
Source File: tensorflow.py From reaver with MIT License | 5 votes |
def __init__(self, sess=None, base_path='results/', checkpoint_freq=100, training_enabled=True): if not sess: sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.keras.backend.set_session(sess) self.sess = sess self.saver = None self.base_path = base_path self.checkpoint_freq = checkpoint_freq self.training_enabled = training_enabled self.global_step = tf.train.get_or_create_global_step() self.summary_writer = tf.summary.FileWriter(self.summaries_path)
Example #25
Source File: run.py From reaver with MIT License | 4 votes |
def main(argv): tf.disable_eager_execution() tf.disable_v2_behavior() args = flags.FLAGS os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu if args.env in rvr.utils.config.SC2_MINIGAMES_ALIASES: args.env = rvr.utils.config.SC2_MINIGAMES_ALIASES[args.env] if args.test: args.n_envs = 1 args.log_freq = 1 args.restore = True expt = rvr.utils.Experiment(args.results_dir, args.env, args.agent, args.experiment, args.restore) gin_files = rvr.utils.find_configs(args.env, os.path.dirname(os.path.abspath(__file__))) if args.restore: gin_files += [expt.config_path] gin_files += args.gin_files if not args.gpu: args.gin_bindings.append("build_cnn_nature.data_format = 'channels_last'") args.gin_bindings.append("build_fully_conv.data_format = 'channels_last'") gin.parse_config_files_and_bindings(gin_files, args.gin_bindings) args.n_envs = min(args.n_envs, gin.query_parameter('ACAgent.batch_sz')) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess_mgr = rvr.utils.tensorflow.SessionManager(sess, expt.path, args.ckpt_freq, training_enabled=not args.test) env_cls = rvr.envs.GymEnv if '-v' in args.env else rvr.envs.SC2Env env = env_cls(args.env, args.render, max_ep_len=args.max_ep_len) agent = rvr.agents.registry[args.agent](env.obs_spec(), env.act_spec(), sess_mgr=sess_mgr, n_envs=args.n_envs) agent.logger = rvr.utils.StreamLogger(args.n_envs, args.log_freq, args.log_eps_avg, sess_mgr, expt.log_path) if sess_mgr.training_enabled: expt.save_gin_config() expt.save_model_summary(agent.model) agent.run(env, args.n_updates * agent.traj_len * agent.batch_sz // args.n_envs)
Example #26
Source File: cudnn_layers_test.py From language with Apache License 2.0 | 4 votes |
def test_stacked_bilstm_compatibility(self): checkpoint_dir = tempfile.mkdtemp(prefix="checkpoint_dir") checkpoint_path = os.path.join(checkpoint_dir, "model.ckpt") hidden_size = 10 num_layers = 3 dropout_ratio = 0.0 input_emb = np.random.uniform(size=[3, 5, 9]).astype(np.float32) input_len = [4, 5, 2] # Make sure we fail explicitly if the specified devices can't be used. config = tf.ConfigProto( allow_soft_placement=False, log_device_placement=True) with tf.Graph().as_default(): with tf.device("/gpu:0"): output_emb = cudnn_layers.stacked_bilstm( input_emb=input_emb, input_len=input_len, hidden_size=hidden_size, num_layers=num_layers, dropout_ratio=dropout_ratio, mode=tf.estimator.ModeKeys.TRAIN, use_cudnn=True) saver = tf.train.Saver() with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) gpu_output_emb = sess.run(output_emb) saver.save(sess, checkpoint_path) with tf.Graph().as_default(): with tf.device("/cpu:0"): output_emb = cudnn_layers.stacked_bilstm( input_emb=input_emb, input_len=input_len, hidden_size=hidden_size, num_layers=num_layers, dropout_ratio=dropout_ratio, mode=tf.estimator.ModeKeys.TRAIN, use_cudnn=False) saver = tf.train.Saver() with tf.Session(config=config) as sess: saver.restore(sess, checkpoint_path) cpu_output_emb = sess.run(output_emb) for c, g, l in zip(cpu_output_emb, gpu_output_emb, input_len): self.assertAllClose(c[:l], g[:l])
Example #27
Source File: video_super_resolver.py From super-resolution-videos with The Unlicense | 4 votes |
def evaluate(video_path): ## create folders to save result images tl.global_flag['mode'] = 'srgan' save_dir = os.path.join("images", "srgan_frames") tl.files.exists_or_mkdir(save_dir) checkpoint_dir = "checkpoint" output_video_name = video_path.split(".")[0] output_video_name += "_srgan."+video_path.split(".")[1] read_video_filepath=os.path.join(os.getcwd(), "videos", video_path) videogen = skvideo.io.vreader(read_video_filepath) metadata = skvideo.io.ffprobe(read_video_filepath) metadata=metadata['video'] H=int(metadata['@height']) W=int(metadata['@width']) fps=metadata['@r_frame_rate'] C=3 t_image = tf.placeholder('float32', [None, H, W, C], name='input_image') net_g = SRGAN_g(t_image, is_train=False, reuse=False) # # ###=============RESTORE G====================================================== sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) tl.files.load_and_assign_npz(sess=sess, name=os.path.join(checkpoint_dir, 'g_srgan.npz'), network=net_g) write_video_filepath=os.path.join(os.getcwd(), 'videos', output_video_name) writer = skvideo.io.FFmpegWriter(write_video_filepath,inputdict={'-r': fps},outputdict={'-r': fps,'-vcodec': 'libx264','-pix_fmt': 'yuv420p'}) for i, frame in enumerate(videogen): avg=frame.max()-frame.min() frame = (frame / avg) - 1 out = sess.run(net_g.outputs, {t_image: [frame]}) #tl.vis.save_image(out[0], save_dir+'/'+str(i)+'.png') out=out[0] out=(255*(out-np.min(out))/(np.max(out)-np.min(out))).astype(np.uint8) writer.writeFrame(out) print (i) writer.close()
Example #28
Source File: bert_as_summarizer.py From DeepPavlov with Apache License 2.0 | 4 votes |
def __init__(self, bert_config_file: str, pretrained_bert: str, vocab_file: str, max_summary_length: int, max_summary_length_in_tokens: Optional[bool] = False, max_seq_length: Optional[int] = 128, do_lower_case: Optional[bool] = False, lang: Optional[str] = 'ru', **kwargs) -> None: self.max_summary_length = max_summary_length self.max_summary_length_in_tokens = max_summary_length_in_tokens self.bert_config = BertConfig.from_json_file(str(expand_path(bert_config_file))) self.bert_preprocessor = BertPreprocessor(vocab_file=vocab_file, do_lower_case=do_lower_case, max_seq_length=max_seq_length) self.tokenize_reg = re.compile(r"[\w']+|[^\w ]") if lang == 'ru': from ru_sent_tokenize import ru_sent_tokenize self.sent_tokenizer = ru_sent_tokenize else: from nltk import sent_tokenize self.sent_tokenizer = sent_tokenize self.sess_config = tf.ConfigProto(allow_soft_placement=True) self.sess_config.gpu_options.allow_growth = True self.sess = tf.Session(config=self.sess_config) self._init_graph() self.sess.run(tf.global_variables_initializer()) if pretrained_bert is not None: pretrained_bert = str(expand_path(pretrained_bert)) if tf.train.checkpoint_exists(pretrained_bert): logger.info('[initializing model with Bert from {}]'.format(pretrained_bert)) tvars = tf.trainable_variables() assignment_map, _ = get_assignment_map_from_checkpoint(tvars, pretrained_bert) tf.train.init_from_checkpoint(pretrained_bert, assignment_map)
Example #29
Source File: utils.py From jann with MIT License | 4 votes |
def __init__(self, annoy_index_path, unique_strings, use_sentence_piece, module_path): self.annoy_index_path = annoy_index_path self.unique_strings = unique_strings # load the annoy index for mmap speed # Length of item vector that will be indexed self.annoy_index = AnnoyIndex(512, metric='angular') # super fast, will just mmap the file self.annoy_index.load(self.annoy_index_path) g = tf.Graph() with g.as_default(): # define the module module = hub.Module(module_path, trainable=False) if use_sentence_piece: # build an input placeholder self.input_placeholder = tf.sparse_placeholder( tf.int64, shape=[None, None]) # build an input / output from the placeholders self.embeddings = module(inputs=dict( values=self.input_placeholder.values, indices=self.input_placeholder.indices, dense_shape=self.input_placeholder.dense_shape ) ) else: # build an input placeholder self.input_placeholder = tf.placeholder( tf.string, shape=(None)) self.embeddings = module(self.input_placeholder) init_op = tf.group([tf.global_variables_initializer(), tf.tables_initializer()]) # do not finalize the graph if using sentence piece module if not use_sentence_piece: g.finalize() # define the configuration config = tf.ConfigProto(allow_soft_placement=True) self.sess = tf.Session(graph=g, config=config) self.sess.run(init_op) if use_sentence_piece: # spm_path now contains a path to the SentencePiece # model stored inside the TF-Hub module with g.as_default(): spm_path = self.sess.run(module(signature="spm_path")) self.sp = spm.SentencePieceProcessor() self.sp.Load(spm_path) tf.logging.info('Interactive session is initialized...')
Example #30
Source File: tf_utils.py From ludwig with Apache License 2.0 | 4 votes |
def get_tf_config(gpus=None, gpu_fraction=1, horovod=None, allow_parallel_threads=True): intra_op_parallelism_threads = 0 # tf determines automatically inter_op_parallelism_threads = 0 # tf determines automatically if not allow_parallel_threads: # this is needed for reproducibility intra_op_parallelism_threads = 1 inter_op_parallelism_threads = 1 if gpus is not None: if gpu_fraction > 0 and gpu_fraction < 1: # this is the source of freezing in tensorflow 1.3.1 gpu_options = GPUOptions( per_process_gpu_memory_fraction=gpu_fraction, allow_growth=True) else: gpu_options = GPUOptions(allow_growth=True) # allow_growth=True is needed for a weird behavior with CUDA 10 # https://github.com/tensorflow/tensorflow/issues/24828 if isinstance(gpus, int): gpus = [gpus] gpu_options.visible_device_list = ','.join(str(g) for g in gpus) tf_config = ConfigProto( allow_soft_placement=True, log_device_placement=False, intra_op_parallelism_threads=intra_op_parallelism_threads, inter_op_parallelism_threads=inter_op_parallelism_threads, gpu_options=gpu_options ) else: tf_config = ConfigProto( allow_soft_placement=True, log_device_placement=False, intra_op_parallelism_threads=intra_op_parallelism_threads, inter_op_parallelism_threads=inter_op_parallelism_threads, gpu_options=GPUOptions(allow_growth=True) ) if horovod is not None: tf_config.gpu_options.visible_device_list = str(horovod.local_rank()) return tf_config