Python tensorflow.compat.v1.FixedLenFeature() Examples

The following are 30 code examples of tensorflow.compat.v1.FixedLenFeature(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.compat.v1 , or try the search function .
Example #1
Source File: decoder.py    From meta-dataset with Apache License 2.0 6 votes vote down vote up
def __call__(self, example_string):
    """Processes a single example string.

    Extracts and processes the feature, and ignores the label.

    Args:
      example_string: str, an Example protocol buffer.

    Returns:
      feat: The feature tensor.
    """
    feat = tf.parse_single_example(
        example_string,
        features={
            'image/embedding':
                tf.FixedLenFeature([self.feat_len], dtype=tf.float32),
            'image/class/label':
                tf.FixedLenFeature([], tf.int64)
        })['image/embedding']

    return feat 
Example #2
Source File: video_utils.py    From tensor2tensor with Apache License 2.0 6 votes vote down vote up
def example_reading_spec(self):
    extra_data_fields, extra_data_items_to_decoders = self.extra_reading_spec

    data_fields = {
        "image/encoded": tf.FixedLenFeature((), tf.string),
        "image/format": tf.FixedLenFeature((), tf.string),
    }
    data_fields.update(extra_data_fields)

    data_items_to_decoders = {
        "frame":
            contrib.slim().tfexample_decoder.Image(
                image_key="image/encoded",
                format_key="image/format",
                shape=[self.frame_height, self.frame_width, self.num_channels],
                channels=self.num_channels),
    }
    data_items_to_decoders.update(extra_data_items_to_decoders)

    return data_fields, data_items_to_decoders 
Example #3
Source File: tensorspec_utils.py    From tensor2robot with Apache License 2.0 6 votes vote down vote up
def _get_feature(tensor_spec,
                 decode_images = True):
  """Get FixedLenfeature or FixedLenSequenceFeature for a tensor spec."""
  varlen_default_value = getattr(tensor_spec, 'varlen_default_value', None)
  if getattr(tensor_spec, 'is_sequence', False):
    cls = tf.FixedLenSequenceFeature
  elif varlen_default_value is not None:
    cls = tf.VarLenFeature
  else:
    cls = tf.FixedLenFeature
  if decode_images and is_encoded_image_spec(tensor_spec):
    if varlen_default_value is not None:
      # Contains a variable length list of images.
      return cls(tf.string)
    elif len(tensor_spec.shape) > 3:
      # Contains a fixed length list of images.
      return cls((tensor_spec.shape[0]), tf.string)
    else:
      return cls((), tf.string)
  elif varlen_default_value is not None:
    return cls(tensor_spec.dtype)
  else:
    return cls(tensor_spec.shape, tensor_spec.dtype) 
Example #4
Source File: vqa.py    From tensor2tensor with Apache License 2.0 6 votes vote down vote up
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (
        super(ImageVqav2Tokens10kLabels3k, self).example_reading_spec())
    data_fields["image/image_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)
    data_fields["image/answer"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)

    slim = contrib.slim()
    data_items_to_decoders["question"] = slim.tfexample_decoder.Tensor(
        "image/question")
    data_items_to_decoders["targets"] = slim.tfexample_decoder.Tensor(
        "image/answer")
    return data_fields, data_items_to_decoders 
Example #5
Source File: rendered_env_problem.py    From tensor2tensor with Apache License 2.0 6 votes vote down vote up
def example_reading_spec(self):
    """Return a mix of env and video data fields and decoders."""
    slim = contrib.slim()
    video_fields, video_decoders = (
        video_utils.VideoProblem.example_reading_spec(self))
    env_fields, env_decoders = (
        gym_env_problem.GymEnvProblem.example_reading_spec(self))

    # Remove raw observations field since we want to capture them as videos.
    env_fields.pop(env_problem.OBSERVATION_FIELD)
    env_decoders.pop(env_problem.OBSERVATION_FIELD)

    # Add frame number spec and decoder.
    env_fields[_FRAME_NUMBER_FIELD] = tf.FixedLenFeature((1,), tf.int64)
    env_decoders[_FRAME_NUMBER_FIELD] = slim.tfexample_decoder.Tensor(
        _FRAME_NUMBER_FIELD)

    # Add video fields and decoders
    env_fields.update(video_fields)
    env_decoders.update(video_decoders)
    return env_fields, env_decoders 
Example #6
Source File: run_classifier.py    From albert with Apache License 2.0 6 votes vote down vote up
def serving_input_receiver_fn():
  """Creates an input function for serving."""
  seq_len = FLAGS.max_seq_length
  serialized_example = tf.placeholder(
      dtype=tf.string, shape=[None], name="serialized_example")
  features = {
      "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
  }
  feature_map = tf.parse_example(serialized_example, features=features)
  feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
  feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in feature_map.keys():
    t = feature_map[name]
    if t.dtype == tf.int64:
      t = tf.to_int32(t)
    feature_map[name] = t

  return tf.estimator.export.ServingInputReceiver(
      features=feature_map, receiver_tensors=serialized_example) 
Example #7
Source File: tf_example_decoder.py    From Object_Detection_Tracking with Apache License 2.0 6 votes vote down vote up
def __init__(self, include_mask=False, regenerate_source_id=False):
    self._include_mask = include_mask
    self._regenerate_source_id = regenerate_source_id
    self._keys_to_features = {
        'image/encoded': tf.FixedLenFeature((), tf.string),
        'image/source_id': tf.FixedLenFeature((), tf.string, ''),
        'image/height': tf.FixedLenFeature((), tf.int64, -1),
        'image/width': tf.FixedLenFeature((), tf.int64, -1),
        'image/object/bbox/xmin': tf.VarLenFeature(tf.float32),
        'image/object/bbox/xmax': tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymin': tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymax': tf.VarLenFeature(tf.float32),
        'image/object/class/label': tf.VarLenFeature(tf.int64),
        'image/object/area': tf.VarLenFeature(tf.float32),
        'image/object/is_crowd': tf.VarLenFeature(tf.int64),
    }
    if include_mask:
      self._keys_to_features.update({
          'image/object/mask':
              tf.VarLenFeature(tf.string),
      }) 
Example #8
Source File: tensorspec_utils_test.py    From tensor2robot with Apache License 2.0 6 votes vote down vote up
def test_tensorspec_to_feature_dict(self):
    features, tensor_spec_dict = utils.tensorspec_to_feature_dict(
        mock_nested_subset_spec, decode_images=True)
    self.assertDictEqual(tensor_spec_dict, {
        'images': T1,
        'actions': T2,
    })
    self.assertDictEqual(
        features, {
            'images': tf.FixedLenFeature((), tf.string),
            'actions': tf.FixedLenFeature(T2.shape, T2.dtype),
        })
    features, tensor_spec_dict = utils.tensorspec_to_feature_dict(
        mock_nested_subset_spec, decode_images=False)
    self.assertDictEqual(tensor_spec_dict, {
        'images': T1,
        'actions': T2,
    })
    self.assertDictEqual(
        features, {
            'images': tf.FixedLenFeature(T1.shape, T1.dtype),
            'actions': tf.FixedLenFeature(T2.shape, T2.dtype),
        }) 
Example #9
Source File: generate_vocab.py    From text with Apache License 2.0 6 votes vote down vote up
def main(_):
  # Define schema.
  raw_metadata = dataset_metadata.DatasetMetadata(
      dataset_schema.from_feature_spec({
          'text': tf.FixedLenFeature([], tf.string),
          'language_code': tf.FixedLenFeature([], tf.string),
      }))

  # Add in padding tokens.
  reserved_tokens = FLAGS.reserved_tokens
  if FLAGS.num_pad_tokens:
    padded_tokens = ['<pad>']
    padded_tokens += ['<pad%d>' % i for i in range(1, FLAGS.num_pad_tokens)]
    reserved_tokens = padded_tokens + reserved_tokens

  params = learner.Params(FLAGS.upper_thresh, FLAGS.lower_thresh,
                          FLAGS.num_iterations, FLAGS.max_input_tokens,
                          FLAGS.max_token_length, FLAGS.max_unique_chars,
                          FLAGS.vocab_size, FLAGS.slack_ratio,
                          FLAGS.include_joiner_token, FLAGS.joiner,
                          reserved_tokens)

  generate_vocab(FLAGS.data_file, FLAGS.vocab_file, FLAGS.metrics_file,
                 raw_metadata, params) 
Example #10
Source File: nq_long_dataset.py    From language with Apache License 2.0 6 votes vote down vote up
def parse_example(serialized_example):
  """Parse example."""
  features = tf.parse_single_example(
      serialized_example,
      features={
          "question":
              tf.FixedLenFeature([], tf.string),
          "context":
              tf.FixedLenSequenceFeature(
                  dtype=tf.string, shape=[], allow_missing=True),
          "long_answer_indices":
              tf.FixedLenSequenceFeature(
                  dtype=tf.int64, shape=[], allow_missing=True)
      })
  features["question"] = features["question"]
  features["context"] = features["context"]
  features["long_answer_indices"] = tf.to_int32(features["long_answer_indices"])
  return features 
Example #11
Source File: datasets.py    From s4l with Apache License 2.0 6 votes vote down vote up
def _parse_fn(self, value):
    """Parses an image and its label from a serialized TFExample.

    Args:
      value: serialized string containing an TFExample.

    Returns:
      Returns a tuple of (image, label) from the TFExample.
    """
    if FLAGS.get_flag_value('pseudo_label_key', None):
      self.ORIGINAL_LABEL_KEY = FLAGS.get_flag_value(
          'original_label_key', None)
      assert self.ORIGINAL_LABEL_KEY is not None, (
          'You must set original_label_key for pseudo labeling.')

      #Replace original label_key with pseudo_label_key.
      self.LABEL_KEY = FLAGS.get_flag_value('pseudo_label_key', None)
      self.FEATURE_MAP.update({
          self.LABEL_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
          self.ORIGINAL_LABEL_KEY: tf.FixedLenFeature(
              shape=[], dtype=tf.int64),
          self.FLAG_KEY: tf.FixedLenFeature(shape=[], dtype=tf.int64),
      })
    return tf.parse_single_example(value, self.FEATURE_MAP) 
Example #12
Source File: nq_short_pipeline_dataset.py    From language with Apache License 2.0 5 votes vote down vote up
def parse_example(serialized_example):
  """Parse example."""
  features = tf.parse_single_example(
      serialized_example,
      features={
          "question": tf.FixedLenFeature([], tf.string),
          "context": tf.FixedLenFeature([], tf.string),
          "answer_start": tf.FixedLenFeature([], tf.int64),
          "answer_end": tf.FixedLenFeature([], tf.int64),
      })
  features["question"] = split_on_whitespace(features["question"])
  features["context"] = split_on_whitespace(features["context"])
  features["answer_start"] = tf.to_int32(features["answer_start"])
  features["answer_end"] = tf.to_int32(features["answer_end"])
  return features 
Example #13
Source File: generate_word_counts.py    From text with Apache License 2.0 5 votes vote down vote up
def main(_):
  # Generate schema of input data.
  raw_metadata = dataset_metadata.DatasetMetadata(
      dataset_schema.from_feature_spec({
          'text': tf.FixedLenFeature([], tf.string),
          'language_code': tf.FixedLenFeature([], tf.string),
      }))

  pipeline = word_count(FLAGS.input_path, FLAGS.output_path, raw_metadata)
  pipeline.run().wait_until_finish() 
Example #14
Source File: babi_qa.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (
        super(BabiQa, self).example_reading_spec())
    data_fields["targets"] = tf.FixedLenFeature([1], tf.int64)
    return (data_fields, data_items_to_decoders) 
Example #15
Source File: sequence_example_decoder.py    From language with Apache License 2.0 5 votes vote down vote up
def decode(self, serialized_example, items=None):
    """Decodes the given serialized TF-example."""
    context, sequence = tf.parse_single_sequence_example(
        serialized_example, self._context_keys_to_features,
        self._sequence_keys_to_features)

    # Merge context and sequence features
    example = {}
    example.update(context)
    example.update(sequence)

    all_features = {}
    all_features.update(self._context_keys_to_features)
    all_features.update(self._sequence_keys_to_features)

    # Reshape non-sparse elements just once:
    for k, value in all_features.items():
      if isinstance(value, tf.FixedLenFeature):
        example[k] = tf.reshape(example[k], value.shape)

    if not items:
      items = list(self._items_to_handlers.keys())

    outputs = []
    for item in items:
      handler = self._items_to_handlers[item]
      keys_to_tensors = {key: example[key] for key in handler.keys}
      outputs.append(handler.tensors_to_item(keys_to_tensors))

    return outputs 
Example #16
Source File: video_utils.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "image/encoded": tf.FixedLenFeature((), tf.string),
        "image/format": tf.FixedLenFeature((), tf.string),
    }

    data_items_to_decoders = {
        "inputs":
            contrib.slim().tfexample_decoder.Image(
                image_key="image/encoded",
                format_key="image/format",
                channels=self.num_channels),
    }

    return data_fields, data_items_to_decoders 
Example #17
Source File: detection_inference.py    From models with Apache License 2.0 5 votes vote down vote up
def build_input(tfrecord_paths):
  """Builds the graph's input.

  Args:
    tfrecord_paths: List of paths to the input TFRecords

  Returns:
    serialized_example_tensor: The next serialized example. String scalar Tensor
    image_tensor: The decoded image of the example. Uint8 tensor,
        shape=[1, None, None,3]
  """
  filename_queue = tf.train.string_input_producer(
      tfrecord_paths, shuffle=False, num_epochs=1)

  tf_record_reader = tf.TFRecordReader()
  _, serialized_example_tensor = tf_record_reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example_tensor,
      features={
          standard_fields.TfExampleFields.image_encoded:
              tf.FixedLenFeature([], tf.string),
      })
  encoded_image = features[standard_fields.TfExampleFields.image_encoded]
  image_tensor = tf.image.decode_image(encoded_image, channels=3)
  image_tensor.set_shape([None, None, 3])
  image_tensor = tf.expand_dims(image_tensor, 0)

  return serialized_example_tensor, image_tensor 
Example #18
Source File: tf_sequence_example_decoder.py    From models with Apache License 2.0 5 votes vote down vote up
def decode(self, serialized_example, items=None):
    """Decodes the given serialized TF-SequenceExample.

    Args:
      serialized_example: A serialized TF-SequenceExample tensor.
      items: The list of items to decode. These must be a subset of the item
        keys in self._items_to_handlers. If `items` is left as None, then all
        of the items in self._items_to_handlers are decoded.
    Returns:
      The decoded items, a list of tensor.
    """
    context, feature_list = tf.parse_single_sequence_example(
        serialized_example, self._keys_to_context_features,
        self._keys_to_sequence_features)
    # Reshape non-sparse elements just once:
    for k in self._keys_to_context_features:
      v = self._keys_to_context_features[k]
      if isinstance(v, tf.FixedLenFeature):
        context[k] = tf.reshape(context[k], v.shape)
    if not items:
      items = self._items_to_handlers.keys()
    outputs = []
    for item in items:
      handler = self._items_to_handlers[item]
      keys_to_tensors = {
          key: context[key] if key in context else feature_list[key]
          for key in handler.keys
      }
      outputs.append(handler.tensors_to_item(keys_to_tensors))
    return outputs 
Example #19
Source File: decoder.py    From meta-dataset with Apache License 2.0 5 votes vote down vote up
def read_single_example(example_string):
  """Parses the record string."""
  return tf.parse_single_example(
      example_string,
      features={
          'image': tf.FixedLenFeature([], dtype=tf.string),
          'label': tf.FixedLenFeature([], tf.int64)
      }) 
Example #20
Source File: video_utils.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    label_key = "image/class/label"
    data_fields, data_items_to_decoders = (
        super(Video2ClassProblem, self).example_reading_spec())
    data_fields[label_key] = tf.FixedLenFeature((1,), tf.int64)
    data_items_to_decoders["targets"] = contrib.slim().tfexample_decoder.Tensor(
        label_key)
    return data_fields, data_items_to_decoders 
Example #21
Source File: tensorspec_utils.py    From tensor2robot with Apache License 2.0 5 votes vote down vote up
def tensorspec_to_feature_dict(tensor_spec_struct, decode_images = True):
  """Converts collection of tensorspecs to a dict of FixedLenFeatures specs.

  Args:
    tensor_spec_struct: A (possibly nested) collection of TensorSpec.
    decode_images: If True, TensorSpec with data_format 'JPEG' or 'PNG' are
      interpreted as encoded image strings.

  Returns:
    features: A dict mapping feature keys to FixedLenFeature and
      FixedLenSequenceFeature values.

  Raises:
    ValueError: If duplicate keys are found in the TensorSpecs.
  """
  assert_valid_spec_structure(tensor_spec_struct)
  features = {}
  tensor_spec_dict = {}

  # Note it is valid to iterate over all tensors since
  # assert_valid_spec_structure will ensure that non unique tensor_spec names
  # have the identical properties.
  flat_tensor_spec_struct = flatten_spec_structure(tensor_spec_struct)
  for key, tensor_spec in flat_tensor_spec_struct.items():
    if tensor_spec.name is None:
      # Do not attempt to parse TensorSpecs whose name attribute is not set.
      logging.info(
          'TensorSpec name attribute for %s is not set; will not parse this '
          'Tensor from TFExamples.', key)
      continue
    features[tensor_spec.name] = _get_feature(tensor_spec, decode_images)
    tensor_spec_dict[tensor_spec.name] = tensor_spec
  return features, tensor_spec_dict 
Example #22
Source File: preprocessing.py    From benchmarks with Apache License 2.0 5 votes vote down vote up
def parse_and_preprocess(self, value, batch_position):
    """Parse an TFRecord."""
    del batch_position
    assert self.supports_datasets()
    context_features = {
        'labels': tf.VarLenFeature(dtype=tf.int64),
        'input_length': tf.FixedLenFeature([], dtype=tf.int64),
        'label_length': tf.FixedLenFeature([], dtype=tf.int64),
    }
    sequence_features = {
        'features': tf.FixedLenSequenceFeature([161], dtype=tf.float32)
    }
    context_parsed, sequence_parsed = tf.parse_single_sequence_example(
        serialized=value,
        context_features=context_features,
        sequence_features=sequence_features,
    )

    return [
        # Input
        tf.expand_dims(sequence_parsed['features'], axis=2),
        # Label
        tf.cast(
            tf.reshape(
                tf.sparse_tensor_to_dense(context_parsed['labels']), [-1]),
            dtype=tf.int32),
        # Input length
        tf.cast(
            tf.reshape(context_parsed['input_length'], [1]),
            dtype=tf.int32),
        # Label length
        tf.cast(
            tf.reshape(context_parsed['label_length'], [1]),
            dtype=tf.int32),
    ] 
Example #23
Source File: wikisum.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def _references_content(ref_files):
  """Returns dict<str ref_url, str ref_content>."""
  example_spec = {
      "url": tf.FixedLenFeature([], tf.string),
      "content": tf.FixedLenFeature([], tf.string),
  }
  data = {}
  for ex in generator_utils.tfrecord_iterator(
      ref_files, gzipped=True, example_spec=example_spec):
    data[ex["url"]] = text_encoder.to_unicode(ex["content"])
  return data 
Example #24
Source File: bair_robot_pushing.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def extra_reading_spec(self):
    """Additional data fields to store on disk and their decoders."""
    data_fields = {
        "frame_number": tf.FixedLenFeature([1], tf.int64),
        "action": tf.FixedLenFeature([4], tf.float32),
    }
    decoders = {
        "frame_number":
            contrib.slim().tfexample_decoder.Tensor(tensor_key="frame_number"),
        "action":
            contrib.slim().tfexample_decoder.Tensor(tensor_key="action"),
    }
    return data_fields, decoders 
Example #25
Source File: data.py    From magenta with Apache License 2.0 5 votes vote down vote up
def parse_preprocessed_example(example_proto):
  """Process an already preprocessed Example proto into input tensors."""
  features = {
      'spec': tf.VarLenFeature(dtype=tf.float32),
      'spectrogram_hash': tf.FixedLenFeature(shape=(), dtype=tf.int64),
      'labels': tf.VarLenFeature(dtype=tf.float32),
      'label_weights': tf.VarLenFeature(dtype=tf.float32),
      'length': tf.FixedLenFeature(shape=(), dtype=tf.int64),
      'onsets': tf.VarLenFeature(dtype=tf.float32),
      'offsets': tf.VarLenFeature(dtype=tf.float32),
      'velocities': tf.VarLenFeature(dtype=tf.float32),
      'sequence_id': tf.FixedLenFeature(shape=(), dtype=tf.string),
      'note_sequence': tf.FixedLenFeature(shape=(), dtype=tf.string),
  }
  record = tf.parse_single_example(example_proto, features)
  input_tensors = InputTensors(
      spec=tf.sparse.to_dense(record['spec']),
      spectrogram_hash=record['spectrogram_hash'],
      labels=tf.sparse.to_dense(record['labels']),
      label_weights=tf.sparse.to_dense(record['label_weights']),
      length=record['length'],
      onsets=tf.sparse.to_dense(record['onsets']),
      offsets=tf.sparse.to_dense(record['offsets']),
      velocities=tf.sparse.to_dense(record['velocities']),
      sequence_id=record['sequence_id'],
      note_sequence=record['note_sequence'])
  return input_tensors 
Example #26
Source File: data.py    From magenta with Apache License 2.0 5 votes vote down vote up
def parse_example(example_proto):
  features = {
      'id': tf.FixedLenFeature(shape=(), dtype=tf.string),
      'sequence': tf.FixedLenFeature(shape=(), dtype=tf.string),
      'audio': tf.FixedLenFeature(shape=(), dtype=tf.string),
      'velocity_range': tf.FixedLenFeature(shape=(), dtype=tf.string),
  }
  record = tf.parse_single_example(example_proto, features)
  return record 
Example #27
Source File: glyphazzn.py    From magenta with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {'targets_rel': tf.FixedLenFeature([51*10], tf.float32),
                   'targets_rnd': tf.FixedLenFeature([64*64], tf.float32),
                   'targets_sln': tf.FixedLenFeature([1], tf.int64),
                   'targets_cls': tf.FixedLenFeature([1], tf.int64)}

    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
Example #28
Source File: arbitrary_image_stylization_convert_tflite.py    From magenta with Apache License 2.0 5 votes vote down vote up
def parse_function(image_size, raw_image_key_name):
  """Generate parse function for parsing the TFRecord training dataset.

  Read the image example and resize it to desired size.

  Args:
    image_size: int, target size to resize the image to
    raw_image_key_name: str, name of the JPEG image in each TFRecord entry

  Returns:
    A map function to use with tf.data.Dataset.map() .
  """

  def func(example_proto):
    """A generator to be used as representative_dataset for TFLiteConverter."""
    image_raw = tf.io.parse_single_example(
        example_proto,
        features={raw_image_key_name: tf.FixedLenFeature([], tf.string)},
    )
    image = tf.image.decode_jpeg(image_raw[raw_image_key_name])
    image = tf.expand_dims(image, axis=0)
    image = tf.image.resize_bilinear(image, (image_size, image_size))
    image = tf.squeeze(image, axis=0)
    image = image / 255.0
    return image

  return func 
Example #29
Source File: moving_mnist.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def extra_reading_spec(self):
    """Additional data fields to store on disk and their decoders."""
    data_fields = {
        "frame_number": tf.FixedLenFeature([1], tf.int64),
    }
    decoders = {
        "frame_number":
            contrib.slim().tfexample_decoder.Tensor(tensor_key="frame_number"),
    }
    return data_fields, decoders 
Example #30
Source File: problem_hparams.py    From tensor2tensor with Apache License 2.0 5 votes vote down vote up
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "audio/sample_count": tf.FixedLenFeature((), tf.int64),
        "audio/sample_width": tf.FixedLenFeature((), tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
    }
    return data_fields, None