Python tensorflow.compat.v1.get_default_graph() Examples
The following are 30
code examples of tensorflow.compat.v1.get_default_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v1
, or try the search function
.
Example #1
Source File: common_layers.py From tensor2tensor with Apache License 2.0 | 6 votes |
def underlying_variable(t): """Find the underlying tf.Variable object. Args: t: a Tensor Returns: tf.Variable. """ t = underlying_variable_ref(t) assert t is not None # make sure that the graph has a variable index and that it is up-to-date if not hasattr(tf.get_default_graph(), "var_index"): tf.get_default_graph().var_index = {} var_index = tf.get_default_graph().var_index for v in tf.global_variables()[len(var_index):]: var_index[v.name] = v return var_index[t.name]
Example #2
Source File: flop_regularizer_test.py From morph-net with Apache License 2.0 | 6 votes |
def test_group_lasso_conv3d(self): shape = [3, 3, 3] video = tf.zeros([2, 3, 3, 3, 1]) net = slim.conv3d( video, 5, shape, padding='VALID', weights_initializer=tf.glorot_normal_initializer(), scope='vconv1') conv3d_op = tf.get_default_graph().get_operation_by_name('vconv1/Conv3D') conv3d_weights = conv3d_op.inputs[1] threshold = 0.09 flop_reg = flop_regularizer.GroupLassoFlopsRegularizer([net.op], threshold=threshold) norm = tf.sqrt(tf.reduce_mean(tf.square(conv3d_weights), [0, 1, 2, 3])) alive = tf.reduce_sum(tf.cast(norm > threshold, tf.float32)) with self.session(): flop_coeff = 2 * shape[0] * shape[1] * shape[2] tf.compat.v1.global_variables_initializer().run() self.assertAllClose(flop_reg.get_cost(), flop_coeff * alive) self.assertAllClose(flop_reg.get_regularization_term(), flop_coeff * tf.reduce_sum(norm))
Example #3
Source File: ssd_mobilenet_v2_fpn_feature_extractor_tf1_test.py From models with Apache License 2.0 | 6 votes |
def test_fused_batchnorm(self, use_depthwise): use_keras = False image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor( depth_multiplier, pad_to_multiple, use_keras=use_keras, use_depthwise=use_depthwise) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue( any('FusedBatchNorm' in op.type for op in tf.get_default_graph().get_operations()))
Example #4
Source File: faster_rcnn_resnet_v1_feature_extractor_tf1_test.py From models with Apache License 2.0 | 6 votes |
def test_overwriting_activation_fn(self): for architecture in ['resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152']: feature_extractor = self._build_feature_extractor( first_stage_features_stride=16, architecture=architecture, activation_fn=tf.nn.relu6) preprocessed_inputs = tf.random_uniform([4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestStage1Scope') _ = feature_extractor.extract_box_classifier_features( rpn_feature_map, scope='TestStaget2Scope') conv_ops = [ op for op in tf.get_default_graph().get_operations() if op.type == 'Relu6' ] op_names = [op.name for op in conv_ops] self.assertIsNotNone(conv_ops) self.assertIn('TestStage1Scope/resnet_v1_50/resnet_v1_50/conv1/Relu6', op_names) self.assertIn( 'TestStaget2Scope/resnet_v1_50/block4/unit_1/bottleneck_v1/conv1/Relu6', op_names)
Example #5
Source File: flop_regularizer_test.py From morph-net with Apache License 2.0 | 6 votes |
def testLossDecorated(self): self.BuildWithBatchNorm(True) self.AddRegularizer() # Create network regularizer with DummyDecorator op regularization. self.gamma_flop_reg = flop_regularizer.GammaFlopsRegularizer( [self.conv3.op, self.conv4.op], gamma_threshold=0.45, regularizer_decorator=dummy_decorator.DummyDecorator, decorator_parameters={'scale': 0.5}) all_convs = [ o for o in tf.get_default_graph().get_operations() if o.type == 'Conv2D' ] total_reg_term = 1410376.375 self.assertAllClose(total_reg_term * 0.5, self.GetLoss(all_convs)) self.assertAllClose(total_reg_term * 0.5, self.GetLoss([]))
Example #6
Source File: configurable_ops_test.py From morph-net with Apache License 2.0 | 6 votes |
def testShareParams(self): # Tests reuse option. first_outputs = 2 alternate_num_outputs = 12 parameterization = {'first/Conv2D': first_outputs} decorator = ops.ConfigurableOps(parameterization=parameterization) explicit = layers.conv2d( self.inputs, first_outputs, 3, scope='first') with arg_scope([layers.conv2d], reuse=True): decorated = decorator.conv2d( self.inputs, num_outputs=alternate_num_outputs, kernel_size=3, scope='first') with self.cached_session(): tf.global_variables_initializer().run() # verifies that parameters are shared. self.assertAllClose(explicit.eval(), decorated.eval()) conv_ops = sorted([ op.name for op in tf.get_default_graph().get_operations() if op.type == 'Conv2D' ]) self.assertAllEqual(['first/Conv2D', 'first_1/Conv2D'], conv_ops)
Example #7
Source File: graph_rewriter_builder_tf1_test.py From models with Apache License 2.0 | 6 votes |
def testQuantizationBuilderSetsUpCorrectTrainArguments(self): with mock.patch.object( contrib_quantize, 'experimental_create_training_graph') as mock_quant_fn: with mock.patch.object(slim, 'summarize_collection') as mock_summarize_col: graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter() graph_rewriter_proto.quantization.delay = 10 graph_rewriter_proto.quantization.weight_bits = 8 graph_rewriter_proto.quantization.activation_bits = 8 graph_rewrite_fn = graph_rewriter_builder.build( graph_rewriter_proto, is_training=True) graph_rewrite_fn() _, kwargs = mock_quant_fn.call_args self.assertEqual(kwargs['input_graph'], tf.get_default_graph()) self.assertEqual(kwargs['quant_delay'], 10) mock_summarize_col.assert_called_with('quant_vars')
Example #8
Source File: lstm_ssd_interleaved_mobilenet_v2_feature_extractor_test.py From models with Apache License 2.0 | 6 votes |
def test_output_nodes_for_tflite(self): image_height = 64 image_width = 64 depth_multiplier = 1.0 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image, unroll_length=1) tflite_nodes = [ 'raw_inputs/init_lstm_c', 'raw_inputs/init_lstm_h', 'raw_inputs/base_endpoint', 'raw_outputs/lstm_c', 'raw_outputs/lstm_h', 'raw_outputs/base_endpoint_1', 'raw_outputs/base_endpoint_2' ] ops_names = [op.name for op in tf.get_default_graph().get_operations()] for node in tflite_nodes: self.assertTrue(any(node in s for s in ops_names))
Example #9
Source File: lstm_ssd_interleaved_mobilenet_v2_feature_extractor_test.py From models with Apache License 2.0 | 6 votes |
def test_fixed_concat_nodes(self): image_height = 64 image_width = 64 depth_multiplier = 1.0 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor( depth_multiplier, pad_to_multiple, is_quantized=True) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image, unroll_length=1) concat_nodes = [ 'MobilenetV2_1/expanded_conv_16/project/Relu6', 'MobilenetV2_2/expanded_conv_16/project/Relu6' ] ops_names = [op.name for op in tf.get_default_graph().get_operations()] for node in concat_nodes: self.assertTrue(any(node in s for s in ops_names))
Example #10
Source File: graph_rewriter_builder.py From models with Apache License 2.0 | 5 votes |
def build(graph_rewriter_config, is_training): """Returns a function that modifies default graph based on options. Args: graph_rewriter_config: graph_rewriter_pb2.GraphRewriter proto. is_training: whether in training of eval mode. """ def graph_rewrite_fn(): """Function to quantize weights and activation of the default graph.""" if (graph_rewriter_config.quantization.weight_bits != 8 or graph_rewriter_config.quantization.activation_bits != 8): raise ValueError('Only 8bit quantization is supported') # Quantize the graph by inserting quantize ops for weights and activations if is_training: contrib_quantize.experimental_create_training_graph( input_graph=tf.get_default_graph(), quant_delay=graph_rewriter_config.quantization.delay ) else: contrib_quantize.experimental_create_eval_graph( input_graph=tf.get_default_graph() ) slim.summarize_collection('quant_vars') return graph_rewrite_fn
Example #11
Source File: graph_rewriter_builder_tf1_test.py From models with Apache License 2.0 | 5 votes |
def testQuantizationBuilderSetsUpCorrectEvalArguments(self): with mock.patch.object(contrib_quantize, 'experimental_create_eval_graph') as mock_quant_fn: with mock.patch.object(slim, 'summarize_collection') as mock_summarize_col: graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter() graph_rewriter_proto.quantization.delay = 10 graph_rewrite_fn = graph_rewriter_builder.build( graph_rewriter_proto, is_training=False) graph_rewrite_fn() _, kwargs = mock_quant_fn.call_args self.assertEqual(kwargs['input_graph'], tf.get_default_graph()) mock_summarize_col.assert_called_with('quant_vars')
Example #12
Source File: utils.py From s4l with Apache License 2.0 | 5 votes |
def import_graph(checkpoint_dir): """Imports the tf graph from latest checkpoint in checkpoint_dir.""" checkpoint = tf.train.latest_checkpoint(checkpoint_dir) tf.train.import_meta_graph(checkpoint + ".meta", clear_devices=True) return tf.get_default_graph()
Example #13
Source File: generate_detection_data_tf1_test.py From models with Apache License 2.0 | 5 votes |
def _export_saved_model(self): tmp_dir = self.get_temp_dir() checkpoint_path = os.path.join(tmp_dir, 'model.ckpt') self._save_checkpoint_from_mock_model(checkpoint_path) output_directory = os.path.join(tmp_dir, 'output') saved_model_path = os.path.join(output_directory, 'saved_model') tf.io.gfile.makedirs(output_directory) with mock.patch.object( model_builder, 'build', autospec=True) as mock_builder: mock_builder.return_value = FakeModel(num_classes=5) pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = False detection_model = model_builder.build(pipeline_config.model, is_training=False) outputs, placeholder_tensor = exporter.build_detection_graph( input_type='tf_example', detection_model=detection_model, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None) output_node_names = ','.join(outputs.keys()) saver = tf.train.Saver() input_saver_def = saver.as_saver_def() frozen_graph_def = exporter.freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=checkpoint_path, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', output_graph='', clear_devices=True, initializer_nodes='') exporter.write_saved_model( saved_model_path=saved_model_path, frozen_graph_def=frozen_graph_def, inputs=placeholder_tensor, outputs=outputs) return saved_model_path
Example #14
Source File: mobilenet_defs_test.py From models with Apache License 2.0 | 5 votes |
def _assert_contains_op(self, op_name): op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertIn(op_name, op_names)
Example #15
Source File: utils_test.py From models with Apache License 2.0 | 5 votes |
def test_quantizable_concat_is_training(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=True) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph())
Example #16
Source File: mobilenet_v3_test.py From models with Apache License 2.0 | 5 votes |
def testMobilenetV3WithOutReduceMean(self, use_groupnorm): _, _ = mobilenet_v3.mobilenet( tf.placeholder(tf.float32, (1, 224, 224, 3)), conv_defs=mobilenet_v3.V3_SMALL, use_groupnorm=use_groupnorm, use_reduce_mean_for_pooling=False) g = tf.get_default_graph() reduce_mean = [v for v in g.get_operations() if 'ReduceMean' in v.name] self.assertEmpty(reduce_mean) self.assertVariablesHaveNormalizerFn(use_groupnorm)
Example #17
Source File: mobilenet_v3_test.py From models with Apache License 2.0 | 5 votes |
def testMobilenetV3WithReduceMean(self, use_groupnorm): _, _ = mobilenet_v3.mobilenet( tf.placeholder(tf.float32, (1, 224, 224, 3)), conv_defs=mobilenet_v3.V3_SMALL, use_groupnorm=use_groupnorm, use_reduce_mean_for_pooling=True) g = tf.get_default_graph() reduce_mean = [v for v in g.get_operations() if 'ReduceMean' in v.name] self.assertNotEmpty(reduce_mean) self.assertVariablesHaveNormalizerFn(use_groupnorm)
Example #18
Source File: utils_test.py From models with Apache License 2.0 | 5 votes |
def test_quantizable_concat_inference(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=False) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph())
Example #19
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_no_dangling_outputs(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=3, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) bad_dangling_ops = [] types_safe_to_dangle = set(['Assign', 'Mul', 'Const']) for op in tf.get_default_graph().get_operations(): if (not op.outputs) or (not op.outputs[0].consumers()): if 'BoxPredictor' in op.name: if op.type not in types_safe_to_dangle: bad_dangling_ops.append(op) self.assertEqual(bad_dangling_ops, [])
Example #20
Source File: mobilenet_v2_test.py From models with Apache License 2.0 | 5 votes |
def find_ops(optype): """Find ops of a given type in graphdef or a graph. Args: optype: operation type (e.g. Conv2D) Returns: List of operations. """ gd = tf.get_default_graph() return [var for var in gd.get_operations() if var.type == optype]
Example #21
Source File: model_statistics.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def get_flops(model): run_meta = tf.RunMetadata() graph = tf.get_default_graph() # We use the Keras session graph in the call to the profiler. opts = tf.profiler.ProfileOptionBuilder.float_operation() flops = tf.profiler.profile(graph=graph, run_meta=run_meta, cmd='op', options=opts) opts = tf.profiler.ProfileOptionBuilder.trainable_variables_parameter() params = tf.profiler.profile(graph=graph, run_meta=run_meta, cmd='op', options=opts) print('Total FLOPs: {}m float_ops'.format(flops.total_float_ops/1e6)) print('Total PARAMs: {}m'.format(params.total_parameters/1e6))
Example #22
Source File: seq2seq.py From magenta with Apache License 2.0 | 5 votes |
def _should_cache_variables(): """Returns True if a default caching device should be set, otherwise False.""" # Don't set a caching device when running in a loop, since it is possible that # train steps could be wrapped in a tf.while_loop. In that scenario caching # prevents forward computations in loop iterations from re-reading the # updated weights. graph = tf.get_default_graph() ctxt = graph._get_control_flow_context() # pylint: disable=protected-access in_v1_while_loop = ( control_flow_util.GetContainingWhileContext(ctxt) is not None) return not in_v1_while_loop
Example #23
Source File: utils.py From s4l with Apache License 2.0 | 5 votes |
def assert_not_in_graph(tensor_name, graph=None): # Put get_default_graph() to the function instead of the parameter. It cannot # be called if the graph is not initialized. if graph is None: graph = tf.get_default_graph() tensor_names = [ tensor.name for tensor in graph.as_graph_def().node ] assert tensor_name not in tensor_names, "%s already exists." % tensor_name
Example #24
Source File: tfci.py From compression with Apache License 2.0 | 5 votes |
def instantiate_signature(signature_def): """Fetches tensors defined in a signature from the graph.""" graph = tf.get_default_graph() inputs = { k: graph.get_tensor_by_name(v.name) for k, v in signature_def.inputs.items() } outputs = { k: graph.get_tensor_by_name(v.name) for k, v in signature_def.outputs.items() } return inputs, outputs
Example #25
Source File: runner_lib.py From recsim with Apache License 2.0 | 5 votes |
def _set_up(self, eval_mode): """Sets up the runner by creating and initializing the agent.""" # Reset the tf default graph to avoid name collisions from previous runs # before doing anything else. tf.reset_default_graph() self._summary_writer = tf.summary.FileWriter(self._output_dir) if self._episode_log_file: self._episode_writer = tf.io.TFRecordWriter( os.path.join(self._output_dir, self._episode_log_file)) # Set up a session and initialize variables. self._sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self._agent = self._create_agent_fn( self._sess, self._env, summary_writer=self._summary_writer, eval_mode=eval_mode) # type check: env/agent must both be multi- or single-user if self._agent.multi_user and not isinstance( self._env.environment, environment.MultiUserEnvironment): raise ValueError('Multi-user agent requires multi-user environment.') if not self._agent.multi_user and isinstance( self._env.environment, environment.MultiUserEnvironment): raise ValueError('Single-user agent requires single-user environment.') self._summary_writer.add_graph(graph=tf.get_default_graph()) self._sess.run(tf.global_variables_initializer()) self._sess.run(tf.local_variables_initializer())
Example #26
Source File: utils.py From mesh with Apache License 2.0 | 5 votes |
def remove_summaries(): """Remove summaries from the default graph.""" g = tf.get_default_graph() key = 'mtf_scalar_summaries' tf.logging.debug('Remove summaries %s' % str(g.get_collection(key))) del g.get_collection_ref(key)[:] assert not g.get_collection(key)
Example #27
Source File: resnet.py From tensor2robot with Apache License 2.0 | 5 votes |
def resnet_endpoints(model): """Extract intermediate values from ResNet model.""" graph = tf.get_default_graph() scope = _get_resnet_scope() end_points = {} tensors = ['initial_conv', 'initial_max_pool', 'pre_final_pool', 'final_reduce_mean', 'final_dense'] tensors += [ 'block_layer{}'.format(i + 1) for i in range(len(model.block_sizes))] for name in tensors: tensor = graph.get_tensor_by_name('{}{}:0'.format(scope, name)) if len(tensor.shape) == 4: tensor = _model_output(tensor, model.data_format) end_points[name] = tensor return end_points
Example #28
Source File: resnet.py From tensor2robot with Apache License 2.0 | 5 votes |
def _get_resnet_scope(): scope = tf.get_default_graph().get_name_scope() if scope: scope += '/' return scope + 'resnet_model/'
Example #29
Source File: utils.py From Object_Detection_Tracking with Apache License 2.0 | 5 votes |
def num_params_flops(readable_format=True): """Return number of parameters and flops.""" nparams = np.sum( [np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]) options = tf.profiler.ProfileOptionBuilder.float_operation() options['output'] = 'none' flops = tf.profiler.profile( tf.get_default_graph(), options=options).total_float_ops # We use flops to denote multiply-adds, which is counted as 2 ops in tfprof. flops = flops // 2 if readable_format: nparams = float(nparams) * 1e-6 flops = float(flops) * 1e-9 return nparams, flops
Example #30
Source File: mobilenet_test.py From benchmarks with Apache License 2.0 | 5 votes |
def find_ops(optype): """Find ops of a given type in graphdef or a graph. Args: optype: operation type (e.g. Conv2D) Returns: List of operations. """ gd = tf.get_default_graph() return [var for var in gd.get_operations() if var.type == optype]