Python scipy.ndimage.convolve1d() Examples
The following are 30
code examples of scipy.ndimage.convolve1d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage
, or try the search function
.
Example #1
Source File: test_pulse_processing.py From strax with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_filter_waveforms(): """Test that filter_records gives the same output as a simple convolution applied to the original pulse (before splitting into records) """ wv = np.random.randn(300) ir = np.random.randn(41) ir[10] += 10 # Because it crashes for max at edges origin = np.argmax(ir) - (len(ir)//2) wv_after = convolve1d(wv, ir, mode='constant', origin=origin) wvs = wv.reshape(3, 100) wvs = strax.filter_waveforms( wvs, ir, prev_r=np.array([strax.NO_RECORD_LINK, 0, 1]), next_r=np.array([1, 2, strax.NO_RECORD_LINK])) wv_after_2 = np.reshape(wvs, -1) assert np.abs(wv_after - wv_after_2).sum() < 1e-9
Example #2
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_correlate01(self): array = numpy.array([1, 2]) weights = numpy.array([2]) expected = [2, 4] output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #3
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_correlate03(self): array = numpy.array([1]) weights = numpy.array([1, 1]) expected = [2] output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #4
Source File: test_ndimage.py From Computable with MIT License | 6 votes |
def test_correlate03(self): array = numpy.array([1]) weights = numpy.array([1, 1]) expected = [2] output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #5
Source File: test_ndimage.py From Computable with MIT License | 6 votes |
def test_correlate01(self): array = numpy.array([1, 2]) weights = numpy.array([2]) expected = [2, 4] output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #6
Source File: toymodel.py From ctapipe with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_waveform(self, charge, time, n_samples): """Obtain the waveform toy model. Parameters ---------- charge : ndarray Amount of charge in each pixel Shape: (n_pixels) time : ndarray The signal time in the waveform in nanoseconds Shape: (n_pixels) n_samples : int Number of samples in the waveform Returns ------- waveform : ndarray Toy model waveform Shape (n_pixels, n_samples) """ n_pixels = charge.size n_upsampled_samples = n_samples * self.upsampling readout = np.zeros((n_pixels, n_upsampled_samples)) sample = (time / self.ref_width_ns).astype(np.int) outofrange = (sample < 0) | (sample >= n_upsampled_samples) sample[outofrange] = 0 charge[outofrange] = 0 readout[np.arange(n_pixels), sample] = charge convolved = convolve1d( readout, self.ref_interp_y, mode="constant", origin=self.origin ) sampled = ( convolved.reshape( (n_pixels, convolved.shape[-1] // self.upsampling, self.upsampling) ).sum(-1) * self.ref_width_ns # Waveform units: p.e. ) return sampled
Example #7
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate25(self): weights = numpy.array([1, 2, 1]) tcor = [[4, 8, 12], [5, 10, 15]] tcov = [[7, 14, 21], [8, 16, 24]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output, origin=1) assert_array_almost_equal(output, tcor) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output, origin=1) assert_array_almost_equal(output, tcov)
Example #8
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate24(self): weights = numpy.array([1, 2, 1]) tcor = [[7, 14, 21], [8, 16, 24]] tcov = [[4, 8, 12], [5, 10, 15]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output, origin=-1) assert_array_almost_equal(output, tcor) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output, origin=-1) assert_array_almost_equal(output, tcov)
Example #9
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate23(self): weights = numpy.array([1, 2, 1]) expected = [[5, 10, 15], [7, 14, 21]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output) assert_array_almost_equal(output, expected) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output) assert_array_almost_equal(output, expected)
Example #10
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate22(self): weights = numpy.array([1, 2, 1]) expected = [[6, 12, 18], [6, 12, 18]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='wrap', output=output) assert_array_almost_equal(output, expected) ndimage.convolve1d(array, weights, axis=0, mode='wrap', output=output) assert_array_almost_equal(output, expected)
Example #11
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate21(self): array = numpy.array([[1, 2, 3], [2, 4, 6]]) expected = [[5, 10, 15], [7, 14, 21]] weights = numpy.array([1, 2, 1]) output = ndimage.correlate1d(array, weights, axis=0) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights, axis=0) assert_array_almost_equal(output, expected)
Example #12
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate17(self): array = numpy.array([1, 2, 3]) tcor = [3, 5, 6] tcov = [2, 3, 5] kernel = numpy.array([1, 1]) output = ndimage.correlate(array, kernel, origin=-1) assert_array_almost_equal(tcor, output) output = ndimage.convolve(array, kernel, origin=-1) assert_array_almost_equal(tcov, output) output = ndimage.correlate1d(array, kernel, origin=-1) assert_array_almost_equal(tcor, output) output = ndimage.convolve1d(array, kernel, origin=-1) assert_array_almost_equal(tcov, output)
Example #13
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate09(self): array = [] kernel = numpy.array([1, 1]) output = ndimage.correlate(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve(array, kernel) assert_array_almost_equal(array, output) output = ndimage.correlate1d(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve1d(array, kernel) assert_array_almost_equal(array, output)
Example #14
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate08(self): array = numpy.array([1, 2, 3]) tcor = [1, 2, 5] tcov = [3, 6, 7] weights = numpy.array([1, 2, -1]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, tcov) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, tcov)
Example #15
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate07(self): array = numpy.array([1, 2, 3]) expected = [5, 8, 11] weights = numpy.array([1, 2, 1]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #16
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate06(self): array = numpy.array([1, 2, 3]) tcor = [9, 14, 17] tcov = [7, 10, 15] weights = numpy.array([1, 2, 3]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, tcov) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, tcov)
Example #17
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate04(self): array = numpy.array([1, 2]) tcor = [2, 3] tcov = [3, 4] weights = numpy.array([1, 1]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, tcov) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, tcov)
Example #18
Source File: utils.py From PyFNND with GNU General Public License v3.0 | 5 votes |
def boxcar(F, dt=0.02, avg_win=1.0): orig_shape = F.shape F = np.atleast_2d(F) npix, nt = F.shape win_len = max(1, avg_win / dt) win = np.ones(win_len) / win_len Fsmooth = ndimage.convolve1d(F, win, axis=1, mode='reflect') return Fsmooth.reshape(orig_shape)
Example #19
Source File: test_ndimage.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_correlate02(self): array = numpy.array([1, 2, 3]) kernel = numpy.array([1]) output = ndimage.correlate(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve(array, kernel) assert_array_almost_equal(array, output) output = ndimage.correlate1d(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve1d(array, kernel) assert_array_almost_equal(array, output)
Example #20
Source File: test_savitzky_golay.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_sg_coeffs_exact(): polyorder = 4 window_length = 9 halflen = window_length // 2 x = np.linspace(0, 21, 43) delta = x[1] - x[0] # The data is a cubic polynomial. We'll use an order 4 # SG filter, so the filtered values should equal the input data # (except within half window_length of the edges). y = 0.5 * x ** 3 - x h = savgol_coeffs(window_length, polyorder) y0 = convolve1d(y, h) assert_allclose(y0[halflen:-halflen], y[halflen:-halflen]) # Check the same input, but use deriv=1. dy is the exact result. dy = 1.5 * x ** 2 - 1 h = savgol_coeffs(window_length, polyorder, deriv=1, delta=delta) y1 = convolve1d(y, h) assert_allclose(y1[halflen:-halflen], dy[halflen:-halflen]) # Check the same input, but use deriv=2. d2y is the exact result. d2y = 3.0 * x h = savgol_coeffs(window_length, polyorder, deriv=2, delta=delta) y2 = convolve1d(y, h) assert_allclose(y2[halflen:-halflen], d2y[halflen:-halflen])
Example #21
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate25(self): weights = numpy.array([1, 2, 1]) tcor = [[4, 8, 12], [5, 10, 15]] tcov = [[7, 14, 21], [8, 16, 24]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output, origin=1) assert_array_almost_equal(output, tcor) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output, origin=1) assert_array_almost_equal(output, tcov)
Example #22
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate24(self): weights = numpy.array([1, 2, 1]) tcor = [[7, 14, 21], [8, 16, 24]] tcov = [[4, 8, 12], [5, 10, 15]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output, origin=-1) assert_array_almost_equal(output, tcor) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output, origin=-1) assert_array_almost_equal(output, tcov)
Example #23
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate23(self): weights = numpy.array([1, 2, 1]) expected = [[5, 10, 15], [7, 14, 21]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='nearest', output=output) assert_array_almost_equal(output, expected) ndimage.convolve1d(array, weights, axis=0, mode='nearest', output=output) assert_array_almost_equal(output, expected)
Example #24
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate22(self): weights = numpy.array([1, 2, 1]) expected = [[6, 12, 18], [6, 12, 18]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, mode='wrap', output=output) assert_array_almost_equal(output, expected) ndimage.convolve1d(array, weights, axis=0, mode='wrap', output=output) assert_array_almost_equal(output, expected)
Example #25
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate20(self): weights = numpy.array([1, 2, 1]) expected = [[5, 10, 15], [7, 14, 21]] for type1 in self.types: array = numpy.array([[1, 2, 3], [2, 4, 6]], type1) for type2 in self.types: output = numpy.zeros((2, 3), type2) ndimage.correlate1d(array, weights, axis=0, output=output) assert_array_almost_equal(output, expected) ndimage.convolve1d(array, weights, axis=0, output=output) assert_array_almost_equal(output, expected)
Example #26
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate17(self): array = numpy.array([1, 2, 3]) tcor = [3, 5, 6] tcov = [2, 3, 5] kernel = numpy.array([1, 1]) output = ndimage.correlate(array, kernel, origin=-1) assert_array_almost_equal(tcor, output) output = ndimage.convolve(array, kernel, origin=-1) assert_array_almost_equal(tcov, output) output = ndimage.correlate1d(array, kernel, origin=-1) assert_array_almost_equal(tcor, output) output = ndimage.convolve1d(array, kernel, origin=-1) assert_array_almost_equal(tcov, output)
Example #27
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate09(self): array = [] kernel = numpy.array([1, 1]) output = ndimage.correlate(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve(array, kernel) assert_array_almost_equal(array, output) output = ndimage.correlate1d(array, kernel) assert_array_almost_equal(array, output) output = ndimage.convolve1d(array, kernel) assert_array_almost_equal(array, output)
Example #28
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate08(self): array = numpy.array([1, 2, 3]) tcor = [1, 2, 5] tcov = [3, 6, 7] weights = numpy.array([1, 2, -1]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, tcov) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, tcor) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, tcov)
Example #29
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate07(self): array = numpy.array([1, 2, 3]) expected = [5, 8, 11] weights = numpy.array([1, 2, 1]) output = ndimage.correlate(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve(array, weights) assert_array_almost_equal(output, expected) output = ndimage.correlate1d(array, weights) assert_array_almost_equal(output, expected) output = ndimage.convolve1d(array, weights) assert_array_almost_equal(output, expected)
Example #30
Source File: test_ndimage.py From Computable with MIT License | 5 votes |
def test_correlate05(self): array = numpy.array([1, 2, 3]) tcor = [2, 3, 5] tcov = [3, 5, 6] kernel = numpy.array([1, 1]) output = ndimage.correlate(array, kernel) assert_array_almost_equal(tcor, output) output = ndimage.convolve(array, kernel) assert_array_almost_equal(tcov, output) output = ndimage.correlate1d(array, kernel) assert_array_almost_equal(tcor, output) output = ndimage.convolve1d(array, kernel) assert_array_almost_equal(tcov, output)