Python scipy.ndimage.histogram() Examples
The following are 13
code examples of scipy.ndimage.histogram().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage
, or try the search function
.
Example #1
Source File: try_catdata.py From vnpy_crypto with MIT License | 6 votes |
def labelmeanfilter_nd(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 # adjusted for 2d x with column variables labelsunique = np.arange(np.max(y)+1) labmeansdata = [] labmeans = [] for xx in x.T: labelmeans = np.array(ndimage.mean(xx, labels=y, index=labelsunique)) labmeansdata.append(labelmeans[y]) labmeans.append(labelmeans) # group count: labelcount = np.array(ndimage.histogram(y, labelsunique[0], labelsunique[-1]+1, 1, labels=y, index=labelsunique)) # returns array of lable/group counts and of label/group means # and label/group means for each original observation return labelcount, np.array(labmeans), np.array(labmeansdata).T
Example #2
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def labelmeanfilter_nd(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 # adjusted for 2d x with column variables labelsunique = np.arange(np.max(y)+1) labmeansdata = [] labmeans = [] for xx in x.T: labelmeans = np.array(ndimage.mean(xx, labels=y, index=labelsunique)) labmeansdata.append(labelmeans[y]) labmeans.append(labelmeans) # group count: labelcount = np.array(ndimage.histogram(y, labelsunique[0], labelsunique[-1]+1, 1, labels=y, index=labelsunique)) # returns array of lable/group counts and of label/group means # and label/group means for each original observation return labelcount, np.array(labmeans), np.array(labmeansdata).T
Example #3
Source File: align.py From sima with GNU General Public License v2.0 | 6 votes |
def entropy2(x, y): '''Joint entropy of paired samples X and Y''' # # Bin each image into 256 gray levels # x = (stretch(x) * 255).astype(int) y = (stretch(y) * 255).astype(int) # # create an image where each pixel with the same X & Y gets # the same value # xy = 256 * x + y xy = xy.flatten() sparse = scipy.sparse.coo_matrix((np.ones(xy.shape), (xy, np.zeros(xy.shape)))) histogram = sparse.toarray() n = np.sum(histogram) if n > 0 and np.max(histogram) > 0: histogram = histogram[histogram > 0] return np.log2(n) - old_div(np.sum(histogram * np.log2(histogram)), n) else: return 0
Example #4
Source File: try_catdata.py From vnpy_crypto with MIT License | 5 votes |
def labelmeanfilter(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 labelsunique = np.arange(np.max(y)+1) labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) # returns label means for each original observation return labelmeans[y] #groupcount: i.e. number of observation by group/label #np.array(ndimage.histogram(yrvs[:,0],0,10,1,labels=yrvs[:,0],index=np.unique(yrvs[:,0])))
Example #5
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_histogram01(): "histogram 1" expected = np.ones(10) input = np.arange(10) output = ndimage.histogram(input, 0, 10, 10) assert_array_almost_equal(output, expected)
Example #6
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_histogram02(): "histogram 2" labels = [1, 1, 1, 1, 2, 2, 2, 2] expected = [0, 2, 0, 1, 1] input = np.array([1, 1, 3, 4, 3, 3, 3, 3]) output = ndimage.histogram(input, 0, 4, 5, labels, 1) assert_array_almost_equal(output, expected)
Example #7
Source File: test_measurements.py From Computable with MIT License | 5 votes |
def test_histogram03(): "histogram 3" labels = [1, 0, 1, 1, 2, 2, 2, 2] expected1 = [0, 1, 0, 1, 1] expected2 = [0, 0, 0, 3, 0] input = np.array([1, 1, 3, 4, 3, 5, 3, 3]) output = ndimage.histogram(input, 0, 4, 5, labels, (1,2)) assert_array_almost_equal(output[0], expected1) assert_array_almost_equal(output[1], expected2)
Example #8
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_histogram01(): expected = np.ones(10) input = np.arange(10) output = ndimage.histogram(input, 0, 10, 10) assert_array_almost_equal(output, expected)
Example #9
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_histogram02(): labels = [1, 1, 1, 1, 2, 2, 2, 2] expected = [0, 2, 0, 1, 1] input = np.array([1, 1, 3, 4, 3, 3, 3, 3]) output = ndimage.histogram(input, 0, 4, 5, labels, 1) assert_array_almost_equal(output, expected)
Example #10
Source File: test_measurements.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_histogram03(): labels = [1, 0, 1, 1, 2, 2, 2, 2] expected1 = [0, 1, 0, 1, 1] expected2 = [0, 0, 0, 3, 0] input = np.array([1, 1, 3, 4, 3, 5, 3, 3]) output = ndimage.histogram(input, 0, 4, 5, labels, (1,2)) assert_array_almost_equal(output[0], expected1) assert_array_almost_equal(output[1], expected2)
Example #11
Source File: try_catdata.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def labelmeanfilter(y, x): # requires integer labels # from mailing list scipy-user 2009-02-11 labelsunique = np.arange(np.max(y)+1) labelmeans = np.array(ndimage.mean(x, labels=y, index=labelsunique)) # returns label means for each original observation return labelmeans[y] #groupcount: i.e. number of observation by group/label #np.array(ndimage.histogram(yrvs[:,0],0,10,1,labels=yrvs[:,0],index=np.unique(yrvs[:,0])))
Example #12
Source File: test_core.py From dask-image with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_histogram(shape, chunks, has_lbls, ind, min, max, bins): a = np.random.random(shape) d = da.from_array(a, chunks=chunks) lbls = None d_lbls = None if has_lbls: lbls = np.zeros(a.shape, dtype=np.int64) lbls += ( (a < 0.5).astype(lbls.dtype) + (a < 0.25).astype(lbls.dtype) + (a < 0.125).astype(lbls.dtype) + (a < 0.0625).astype(lbls.dtype) ) d_lbls = da.from_array(lbls, chunks=d.chunks) a_r = spnd.histogram(a, min, max, bins, lbls, ind) d_r = dask_image.ndmeasure.histogram(d, min, max, bins, d_lbls, ind) if ind is None or np.isscalar(ind): if a_r is None: assert d_r.compute() is None else: np.allclose(a_r, d_r.compute(), equal_nan=True) else: assert a_r.dtype == d_r.dtype assert a_r.shape == d_r.shape for i in it.product(*[range(_) for _ in a_r.shape]): if a_r[i] is None: assert d_r[i].compute() is None else: assert np.allclose(a_r[i], d_r[i].compute(), equal_nan=True)
Example #13
Source File: align.py From sima with GNU General Public License v2.0 | 5 votes |
def entropy(x): '''The entropy of x as if x is a probability distribution''' histogram = scind.histogram(x.astype(float), np.min(x), np.max(x), 256) n = np.sum(histogram) if n > 0 and np.max(histogram) > 0: histogram = histogram[histogram != 0] return np.log2(n) - old_div(np.sum(histogram * np.log2(histogram)), n) else: return 0