Python sys.float_info.max() Examples

The following are 24 code examples of sys.float_info.max(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sys.float_info , or try the search function .
Example #1
Source File: router.py    From AMS with Apache License 2.0 6 votes vote down vote up
def get_view_data():
    waypoint_ids = app.waypoint.get_waypoint_ids()
    waypoints = {}
    arrows = app.arrow.get_arrows()
    lat_min, lng_min = float_info.max, float_info.max
    lat_max, lng_max = 0.0, 0.0
    for waypoint_id in waypoint_ids:
        lat, lng = app.waypoint.get_latlng(waypoint_id)
        lat_min = min(lat_min, lat)
        lat_max = max(lat_max, lat)
        lng_min = min(lng_min, lng)
        lng_max = max(lng_max, lng)
        waypoints[waypoint_id] = {
            "geohash": app.waypoint.get_geohash(waypoint_id),
            "position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
        }
    return api_response(code=200, message={
        "viewPoint": {
            "lat": 0.5*(lat_max + lat_min),
            "lng": 0.5*(lng_max + lng_min)},
        "waypoints": waypoints,
        "arrows": arrows,
        "topics": app.topics
    }) 
Example #2
Source File: test_numberformat.py    From djongo with GNU Affero General Public License v3.0 6 votes vote down vote up
def test_large_number(self):
        most_max = (
            '{}179769313486231570814527423731704356798070567525844996'
            '598917476803157260780028538760589558632766878171540458953'
            '514382464234321326889464182768467546703537516986049910576'
            '551282076245490090389328944075868508455133942304583236903'
            '222948165808559332123348274797826204144723168738177180919'
            '29988125040402618412485836{}'
        )
        most_max2 = (
            '{}35953862697246314162905484746340871359614113505168999'
            '31978349536063145215600570775211791172655337563430809179'
            '07028764928468642653778928365536935093407075033972099821'
            '15310256415249098018077865788815173701691026788460916647'
            '38064458963316171186642466965495956524082894463374763543'
            '61838599762500808052368249716736'
        )
        int_max = int(float_info.max)
        self.assertEqual(nformat(int_max, '.'), most_max.format('', '8'))
        self.assertEqual(nformat(int_max + 1, '.'), most_max.format('', '9'))
        self.assertEqual(nformat(int_max * 2, '.'), most_max2.format(''))
        self.assertEqual(nformat(0 - int_max, '.'), most_max.format('-', '8'))
        self.assertEqual(nformat(-1 - int_max, '.'), most_max.format('-', '9'))
        self.assertEqual(nformat(-2 * int_max, '.'), most_max2.format('-')) 
Example #3
Source File: test_numberformat.py    From djongo with GNU Affero General Public License v3.0 6 votes vote down vote up
def test_large_number(self):
        most_max = (
            '{}179769313486231570814527423731704356798070567525844996'
            '598917476803157260780028538760589558632766878171540458953'
            '514382464234321326889464182768467546703537516986049910576'
            '551282076245490090389328944075868508455133942304583236903'
            '222948165808559332123348274797826204144723168738177180919'
            '29988125040402618412485836{}'
        )
        most_max2 = (
            '{}35953862697246314162905484746340871359614113505168999'
            '31978349536063145215600570775211791172655337563430809179'
            '07028764928468642653778928365536935093407075033972099821'
            '15310256415249098018077865788815173701691026788460916647'
            '38064458963316171186642466965495956524082894463374763543'
            '61838599762500808052368249716736'
        )
        int_max = int(float_info.max)
        self.assertEqual(nformat(int_max, '.'), most_max.format('', '8'))
        self.assertEqual(nformat(int_max + 1, '.'), most_max.format('', '9'))
        self.assertEqual(nformat(int_max * 2, '.'), most_max2.format(''))
        self.assertEqual(nformat(0 - int_max, '.'), most_max.format('-', '8'))
        self.assertEqual(nformat(-1 - int_max, '.'), most_max.format('-', '9'))
        self.assertEqual(nformat(-2 * int_max, '.'), most_max2.format('-')) 
Example #4
Source File: align.py    From bioinformatics with GNU General Public License v3.0 6 votes vote down vote up
def longest_manhattan_path(n,m,down,right):
    s=[]
    for i in range(n+1):
        s.append(zeroes(m+1))

    for i in range(1,n+1):
        s[i][0]=s[i-1][0]+down[i-1][0]
        
    for j in range(1,m+1):
        s[0][j]=s[0][j-1]+right[0][j-1]
        
    for i in range(1,n+1):    
        for j in range(1,m+1):
            s[i][j]=max(s[i-1][j]+down[i-1][j],s[i][j-1]+right[i][j-1])

    return s[n][m]

# BA5C 	Find a Longest Common Subsequence of Two Strings
#
# Input: Two strings.
#
# Return: A longest common subsequence of these strings.
#
# http://rosalind.info/problems/ba5a/ 
Example #5
Source File: align.py    From bioinformatics with GNU General Public License v3.0 6 votes vote down vote up
def number_of_coins(money,coins):
    number = [0]                           # We will use Dynamic Programming, and solve 
                                           # the problem for each amount up to and including money
    for m in range(1,money+1):             # solve for m
        nn = float_info.max            # Number of coins: assume that we haven't solved
        for coin in coins:                 # Find a coin such that we can make change using it
                                           # plus a previoudly comuted value
            if m>=coin:
                if number[m-coin]+1<nn:
                    nn = number[m-coin]+1
        number.append(nn)
    return number[money]

# BA5B 	Find the Length of a Longest Path in a Manhattan-like Grid 
#
# Input: Integers n and m, followed by an n*(m+1) matrix Down and an
#        (n+1)*m matrix Right. The two matrices are separated by the "-" symbol.
#
# Return: The length of a longest path from source (0, 0) to sink (n, m)
#        in the n*m rectangular grid whose edges are defined by the matrices
#        Down and Right.
#
# http://rosalind.info/problems/ba5a/ 
Example #6
Source File: FrameTime.py    From blender-ue4-live-link with GNU General Public License v3.0 6 votes vote down vote up
def from_decimal(self, _in_decimal_frame):
        """
        Convert a decimal representation to a frame time
        Note that subframes are always positive, so negative
        decimal representations result in an inverted sub frame
        and floored frame number
        """
        new_frame = math.floor(_in_decimal_frame)

        # Ensure fractional parts above the highest sub frame
        # float precision do not round to 0.0
        fraction = _in_decimal_frame - math.floor(_in_decimal_frame)

        # clamp = max(min(value, max_value), min_value)
        return FrameTime(new_frame,
                         max(min(fraction, float_info.max), float_info.min)) 
Example #7
Source File: router.py    From AMS with Apache License 2.0 6 votes vote down vote up
def get_view_data():
    waypoint_ids = app.waypoint.get_waypoint_ids()
    waypoints = {}
    arrows = app.arrow.get_arrows()
    lat_min, lng_min = float_info.max, float_info.max
    lat_max, lng_max = 0.0, 0.0
    for waypoint_id in waypoint_ids:
        lat, lng = app.waypoint.get_latlng(waypoint_id)
        lat_min = min(lat_min, lat)
        lat_max = max(lat_max, lat)
        lng_min = min(lng_min, lng)
        lng_max = max(lng_max, lng)
        waypoints[waypoint_id] = {
            "geohash": app.waypoint.get_geohash(waypoint_id),
            "position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
        }
    return api_response(code=200, message={
        "viewPoint": {
            "lat": 0.5*(lat_max + lat_min),
            "lng": 0.5*(lng_max + lng_min)},
        "waypoints": waypoints,
        "arrows": arrows,
        "topics": app.topics
    }) 
Example #8
Source File: router.py    From AMS with Apache License 2.0 6 votes vote down vote up
def get_view_data():
    waypoint_ids = app.waypoint.get_waypoint_ids()
    waypoints = {}
    arrows = app.arrow.get_arrows()
    lat_min, lng_min = float_info.max, float_info.max
    lat_max, lng_max = 0.0, 0.0
    for waypoint_id in waypoint_ids:
        lat, lng = app.waypoint.get_latlng(waypoint_id)
        lat_min = min(lat_min, lat)
        lat_max = max(lat_max, lat)
        lng_min = min(lng_min, lng)
        lng_max = max(lng_max, lng)
        waypoints[waypoint_id] = {
            "geohash": app.waypoint.get_geohash(waypoint_id),
            "position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
        }
    return api_response(code=200, message={
        "viewPoint": {
            "lat": 0.5*(lat_max + lat_min),
            "lng": 0.5*(lng_max + lng_min)},
        "waypoints": waypoints,
        "arrows": arrows,
        "topics": app.topics
    }) 
Example #9
Source File: router.py    From AMS with Apache License 2.0 6 votes vote down vote up
def get_view_data():
    waypoint_ids = app.waypoint.get_waypoint_ids()
    waypoints = {}
    arrows = app.arrow.get_arrows()
    lat_min, lng_min = float_info.max, float_info.max
    lat_max, lng_max = 0.0, 0.0
    for waypoint_id in waypoint_ids:
        lat, lng = app.waypoint.get_latlng(waypoint_id)
        lat_min = min(lat_min, lat)
        lat_max = max(lat_max, lat)
        lng_min = min(lng_min, lng)
        lng_max = max(lng_max, lng)
        waypoints[waypoint_id] = {
            "geohash": app.waypoint.get_geohash(waypoint_id),
            "position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
        }
    return api_response(code=200, message={
        "viewPoint": {
            "lat": 0.5*(lat_max + lat_min),
            "lng": 0.5*(lng_max + lng_min)},
        "waypoints": waypoints,
        "arrows": arrows,
        "topics": app.topics
    }) 
Example #10
Source File: FrameRate.py    From blender-ue4-live-link with GNU General Public License v3.0 6 votes vote down vote up
def as_frame_time(self, _in_time_seconds: float):
        """
        Convert the specified time in seconds to a frame number by rounding
        down to the nearest integer

        Param: _in_time_seconds  The time to convert in seconds

        Returns a frame number that represents the supplied time. Rounded
        down to the nearest integer
        """
        time_as_frame = ((_in_time_seconds * self.numerator)
                         / self.denominator)
        frame_number = math.floor(time_as_frame)
        sub_frame = time_as_frame - math.floor(time_as_frame)
        if sub_frame > 0:
            sub_frame = min(sub_frame, float_info.max)
        return FrameTime(frame_number, sub_frame) 
Example #11
Source File: router.py    From AMS with Apache License 2.0 6 votes vote down vote up
def get_view_data():
    waypoint_ids = app.waypoint.get_waypoint_ids()
    waypoints = {}
    arrows = app.arrow.get_arrows()
    lat_min, lng_min = float_info.max, float_info.max
    lat_max, lng_max = 0.0, 0.0
    for waypoint_id in waypoint_ids:
        lat, lng = app.waypoint.get_latlng(waypoint_id)
        lat_min = min(lat_min, lat)
        lat_max = max(lat_max, lat)
        lng_min = min(lng_min, lng)
        lng_max = max(lng_max, lng)
        waypoints[waypoint_id] = {
            "geohash": app.waypoint.get_geohash(waypoint_id),
            "position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
        }
    return api_response(code=200, message={
        "viewPoint": {
            "lat": 0.5*(lat_max + lat_min),
            "lng": 0.5*(lng_max + lng_min)},
        "waypoints": waypoints,
        "arrows": arrows,
        "topics": app.topics
    }) 
Example #12
Source File: MyDoubleValidator.py    From pyweed with GNU Lesser General Public License v3.0 5 votes vote down vote up
def __init__(self, bottom=float_info.min,
                 top=float_info.max,
                 decimals=float_info.dig, parent=None):

        super(MyDoubleValidator, self).__init__(bottom, top, decimals, parent) 
Example #13
Source File: stats.py    From empyrical with Apache License 2.0 5 votes vote down vote up
def gpd_loglikelihood_scale_only(scale, price_data):
    n = len(price_data)
    data_sum = price_data.sum()
    result = -1 * float_info.max
    if (scale >= 0):
        result = ((-n*np.log(scale)) - (data_sum/scale))
    return result 
Example #14
Source File: stats.py    From empyrical with Apache License 2.0 5 votes vote down vote up
def gpd_loglikelihood_scale_and_shape(scale, shape, price_data):
    n = len(price_data)
    result = -1 * float_info.max
    if (scale != 0):
        param_factor = shape / scale
        if (shape != 0 and param_factor >= 0 and scale >= 0):
            result = ((-n * np.log(scale)) -
                      (((1 / shape) + 1) *
                       (np.log((shape / scale * price_data) + 1)).sum()))
    return result 
Example #15
Source File: univariatenormalestimator.py    From HoeffdingTree with GNU General Public License v3.0 5 votes vote down vote up
def update_mean_and_variance(self):
        self._mean = 0
        if self._sum_of_weights > 0:
            self._mean = self._weighted_sum / self._sum_of_weights

        self._variance = float_info.max
        if self._sum_of_weights > 0:
            self._variance = self._weighted_sum_squared / self._sum_of_weights - self._mean * self._mean

        if self._variance <= self._min_var:
            self._variance = self._min_var 
Example #16
Source File: univariatenormalestimator.py    From HoeffdingTree with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self):
        self._weighted_sum = 0
        self._weighted_sum_squared = 0
        self._sum_of_weights = 0
        self._mean = 0
        self._variance = float_info.max
        self._min_var = 1e-12
        self.CONST = math.log(2 * math.pi) 
Example #17
Source File: decision_tree.py    From dislib with Apache License 2.0 5 votes vote down vote up
def _build_subtree_wrapper(sample, y_s, n_features, max_depth, n_classes,
                           m_try, sklearn_max, random_state, samples_file,
                           features_file):
    seed = random_state.randint(np.iinfo(np.int32).max)
    if features_file is not None:
        return _build_subtree_using_features(sample, y_s, n_features,
                                             max_depth, n_classes, m_try,
                                             sklearn_max, seed, samples_file,
                                             features_file)
    else:
        return _build_subtree(sample, y_s, n_features, max_depth, n_classes,
                              m_try, sklearn_max, seed, samples_file) 
Example #18
Source File: decision_tree.py    From dislib with Apache License 2.0 5 votes vote down vote up
def _compute_split(sample, n_features, y_s, n_classes, m_try, features_mmap,
                   random_state):
    node_info = left_group = y_l = right_group = y_r = None
    split_ended = False
    tried_indices = []
    while not split_ended:
        untried_indices = np.setdiff1d(np.arange(n_features), tried_indices)
        index_selection = _feature_selection(untried_indices, m_try,
                                             random_state)
        b_score = float_info.max
        b_index = None
        b_value = None
        for index in index_selection:
            feature = features_mmap[index]
            score, value = test_split(sample, y_s, feature, n_classes)
            if score < b_score:
                b_score, b_value, b_index = score, value, index
        groups = _get_groups(sample, y_s, features_mmap, b_index, b_value)
        left_group, y_l, right_group, y_r = groups
        if left_group.size and right_group.size:
            split_ended = True
            node_info = _InnerNodeInfo(b_index, b_value)
        else:
            tried_indices.extend(list(index_selection))
            if len(tried_indices) == n_features:
                split_ended = True
                node_info = _compute_leaf_info(y_s, n_classes)
                left_group = sample
                y_l = y_s
                right_group = np.array([], dtype=np.int64)
                y_r = np.array([], dtype=np.int8)

    return node_info, left_group, y_l, right_group, y_r 
Example #19
Source File: decision_tree.py    From dislib with Apache License 2.0 5 votes vote down vote up
def _split_node_wrapper(sample, n_features, y_s, n_classes, m_try,
                        random_state, samples_file=None, features_file=None):
    seed = random_state.randint(np.iinfo(np.int32).max)

    if features_file is not None:
        return _split_node_using_features(sample, n_features, y_s, n_classes,
                                          m_try, features_file, seed)
    elif samples_file is not None:
        return _split_node(sample, n_features, y_s, n_classes, m_try,
                           samples_file, seed)
    else:
        raise ValueError('Invalid combination of arguments. samples_file is '
                         'None and features_file is None.') 
Example #20
Source File: test_split.py    From dislib with Apache License 2.0 5 votes vote down vote up
def test_split(sample, y_s, feature, n_classes):
    size = y_s.shape[0]
    if size == 0:
        return float_info.max, np.float64(np.inf)

    f = feature[sample]
    sort_indices = np.argsort(f)
    y_sorted = y_s[sort_indices]
    f_sorted = f[sort_indices]

    not_repeated = np.empty(size, dtype=np.bool_)
    not_repeated[0: size - 1] = (f_sorted[1:] != f_sorted[:-1])
    not_repeated[size - 1] = True

    l_freq = np.zeros((n_classes, size), dtype=np.int64)
    l_freq[y_sorted, np.arange(size)] = 1

    r_freq = np.zeros((n_classes, size), dtype=np.int64)
    r_freq[:, 1:] = l_freq[:, :0:-1]

    l_weight = np.sum(np.square(np.cumsum(l_freq, axis=-1)), axis=0)
    r_weight = np.sum(np.square(np.cumsum(r_freq, axis=-1)), axis=0)[::-1]

    l_length = np.arange(1, size + 1, dtype=np.int32)
    r_length = np.arange(size - 1, -1, -1, dtype=np.int32)
    r_length[size - 1] = 1  # Avoid div by zero, the right score is 0 anyways

    scores = gini_criteria_proxy(l_weight, l_length, r_weight, r_length,
                                 not_repeated)

    min_index = size - np.argmin(scores[::-1]) - 1

    if min_index + 1 == size:
        b_value = np.float64(np.inf)
    else:
        b_value = (f_sorted[min_index] + f_sorted[min_index + 1]) / 2
    return scores[min_index], b_value 
Example #21
Source File: align.py    From bioinformatics with GNU General Public License v3.0 5 votes vote down vote up
def create_distance_matrix(nrows,ncolumns,initial_value=-float_info.max):
    s=[]
    for i in range(nrows):
        row=[]
        for j in range(ncolumns):
            row.append(initial_value)        
        s.append(row)
    s[0][0]=0
    return s 
Example #22
Source File: decision_tree.py    From dislib with Apache License 2.0 4 votes vote down vote up
def fit(self, dataset):
        """Fits the DecisionTreeClassifier.

        Parameters
        ----------
        dataset : dislib.classification.rf._data.RfDataset

        """

        self.n_features = dataset.get_n_features()
        self.n_classes = dataset.get_n_classes()
        samples_path = dataset.samples_path
        features_path = dataset.features_path
        n_samples = dataset.get_n_samples()
        y_codes = dataset.get_y_codes()

        seed = self.random_state.randint(np.iinfo(np.int32).max)

        sample, y_s = _sample_selection(n_samples, y_codes, self.bootstrap,
                                        seed)

        self.tree = _Node()
        self.nodes_info = []
        self.subtrees = []
        tree_traversal = [(self.tree, sample, y_s, 0)]
        while tree_traversal:
            node, sample, y_s, depth = tree_traversal.pop()
            if depth < self.distr_depth:
                split = _split_node_wrapper(sample, self.n_features, y_s,
                                            self.n_classes, self.try_features,
                                            self.random_state,
                                            samples_file=samples_path,
                                            features_file=features_path)
                node_info, left_group, y_l, right_group, y_r = split
                compss_delete_object(sample)
                compss_delete_object(y_s)
                node.content = len(self.nodes_info)
                self.nodes_info.append(node_info)
                node.left = _Node()
                node.right = _Node()
                depth = depth + 1
                tree_traversal.append((node.right, right_group, y_r, depth))
                tree_traversal.append((node.left, left_group, y_l, depth))
            else:
                subtree = _build_subtree_wrapper(sample, y_s, self.n_features,
                                                 self.max_depth - depth,
                                                 self.n_classes,
                                                 self.try_features,
                                                 self.sklearn_max,
                                                 self.random_state,
                                                 samples_path, features_path)
                node.content = len(self.subtrees)
                self.subtrees.append(subtree)
                compss_delete_object(sample)
                compss_delete_object(y_s)
        self.nodes_info = _merge(*self.nodes_info) 
Example #23
Source File: align.py    From bioinformatics with GNU General Public License v3.0 4 votes vote down vote up
def san_kai(s,t, replace_score=blosum62,sigma=11,epsilon=1,backtrack=unwind_moves):
    
    def match(pair,replace_score=replace_score):
        def reverse(pair):
            a,b=pair
            return (b,a)
        return replace_score[pair] if pair in replace_score else replace_score[reverse(pair)]

    lower        = create_distance_matrix(len(s)+1,len(t)+1)
    middle       = create_distance_matrix(len(s)+1,len(t)+1)
    upper        = create_distance_matrix(len(s)+1,len(t)+1)

    moves        = {}
    lower[0][0]  = -float('inf')
    middle[0][0] = 0
    upper[0][0]  = -float('inf')
    
    for i in range(1,len(s)+1):
        lower[i][0]  = - (sigma + epsilon *(i-1))
        middle[i][0] =  - (sigma + epsilon *(i-1)) #-float('inf')
        upper[i][0]  =  - (sigma + epsilon *(i-1))# -float('inf')
    for j in range(1,len(t)+1):
        lower[0][j]  =  - (sigma + epsilon *(j-1))#-float('inf')
        middle[0][j] =  - (sigma + epsilon *(j-1)) #-float('inf')
        upper[0][j]  = - (sigma + epsilon *(j-1))
        
    for i in range(1,len(s)+1):
        for j in range(1,len(t)+1):
            lower[i][j]  = max(lower[i-1][j] - epsilon,
                               middle[i-1][j] - sigma)
            
            upper[i][j]  =  max(upper[i][j-1] - epsilon,
                               middle[i][j-1] - sigma)
            
            choices      = [lower[i][j], 
                            middle[i-1][j-1] + match((s[i-1],t[j-1])),
                            upper[i][j]]
            index        = argmax(choices)
            middle[i][j] = choices[index]
            moves[(i,j)] = [(i-1, j,   s[i-1], '-'),     # Comes from lower
                            (i-1, j-1, s[i-1], t[j-1]),  # Comes from middle
                            (i,   j-1, '-',    t[j-1]    # Comes from upper
                             )][index]
                    
    return backtrack(moves,middle[len(s)][len(t)],len(s),len(t)) 
Example #24
Source File: align.py    From bioinformatics with GNU General Public License v3.0 4 votes vote down vote up
def longest_path(source,sink,graph):
    def initialize_s():
        s={}
        for a,b,_ in graph:
            s[a]=-float_info.max
            s[b]=-float_info.max
        s[source]=0
        return s
    
    def create_adjacency_list():
        adjacency_list={}
        for a,b,w in graph:
            if not a in adjacency_list:
                adjacency_list[a]=[]
            adjacency_list[a].append(b)
        return adjacency_list
   
    def create_weights():
        weights={}
        for a,b,w in graph:
            weights[(a,b)]=w
        return weights
        
    def calculate_distances(ordering):
        s=initialize_s()
        weights=create_weights()        
        predecessors={}
        for b in ordering:
            for a in ordering:
                if a==b:
                    break
                
                new_s=max(s[b],s[a]+(weights[(a,b)] if (a,b) in weights else 0))
                if new_s>s[b]:
                    s[b]=new_s
                    predecessors[b]=a
        return (s,predecessors)
   
    def create_path(predecessors):
        path=[sink]
        node=sink
        while node in predecessors:
            node=predecessors[node]
            path.append(node)
        return path
    
    s,predecessors=calculate_distances(topological_order(create_adjacency_list()))
    
    return (s[sink],create_path(predecessors)[::-1])

# BA5F 	Find a Highest-Scoring Local Alignment of Two Strings  
#
# common code

# BA5E 	Find a Highest-Scoring Alignment of Two Strings
# create_distance_matrix