Python pandas._libs.hashtable.StringHashTable() Examples
The following are 4
code examples of pandas._libs.hashtable.StringHashTable().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas._libs.hashtable
, or try the search function
.
Example #1
Source File: algorithms.py From recruit with Apache License 2.0 | 6 votes |
def _get_data_algo(values, func_map): if is_categorical_dtype(values): values = values._values_for_rank() values, dtype, ndtype = _ensure_data(values) if ndtype == 'object': # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ['string']: ndtype = 'string' f = func_map.get(ndtype, func_map['object']) return f, values # --------------- # # top-level algos # # --------------- #
Example #2
Source File: algorithms.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _get_data_algo(values, func_map): if is_categorical_dtype(values): values = values._values_for_rank() values, dtype, ndtype = _ensure_data(values) if ndtype == 'object': # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ['string']: ndtype = 'string' f = func_map.get(ndtype, func_map['object']) return f, values # --------------- # # top-level algos # # --------------- #
Example #3
Source File: algorithms.py From recruit with Apache License 2.0 | 5 votes |
def _get_hashtable_algo(values): """ Parameters ---------- values : arraylike Returns ------- tuples(hashtable class, vector class, values, dtype, ndtype) """ values, dtype, ndtype = _ensure_data(values) if ndtype == 'object': # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ['string']: ndtype = 'string' else: ndtype = 'object' htable, table = _hashtables[ndtype] return (htable, table, values, dtype, ndtype)
Example #4
Source File: algorithms.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _get_hashtable_algo(values): """ Parameters ---------- values : arraylike Returns ------- tuples(hashtable class, vector class, values, dtype, ndtype) """ values, dtype, ndtype = _ensure_data(values) if ndtype == 'object': # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ['string']: ndtype = 'string' else: ndtype = 'object' htable, table = _hashtables[ndtype] return (htable, table, values, dtype, ndtype)