Python tensorboard.summary.scalar() Examples

The following are 19 code examples of tensorboard.summary.scalar(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorboard.summary , or try the search function .
Example #1
Source File: test_logging.py    From tensorboard with Apache License 2.0 6 votes vote down vote up
def test_event_logging():
    logdir = './experiment/'
    summary_writer = FileWriter(logdir)
    scalar_value = 1.0
    s = scalar('test_scalar', scalar_value)
    summary_writer.add_summary(s, global_step=1)
    summary_writer.close()
    assert os.path.isdir(logdir)
    assert len(os.listdir(logdir)) == 1

    summary_writer = FileWriter(logdir)
    scalar_value = 1.0
    s = scalar('test_scalar', scalar_value)
    summary_writer.add_summary(s, global_step=1)
    summary_writer.close()
    assert os.path.isdir(logdir)
    assert len(os.listdir(logdir)) == 2

    # clean up.
    shutil.rmtree(logdir) 
Example #2
Source File: trainer.py    From Recipe2ImageGAN with MIT License 5 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        #
        netD.zero_grad()
        #
        real_logits = netD(real_imgs)
        fake_logits = netD(fake_imgs.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        #
        errD = errD_real + errD_fake
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #3
Source File: trainer.py    From StackGAN-v2 with MIT License 5 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        #
        netD.zero_grad()
        #
        real_logits = netD(real_imgs)
        fake_logits = netD(fake_imgs.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        #
        errD = errD_real + errD_fake
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #4
Source File: test_summary_writer.py    From tensorboard with Apache License 2.0 5 votes vote down vote up
def test_scalar_summary():
    scalar_value = 1.0
    s = scalar('test_scalar', scalar_value)
    values = s.value
    assert len(values) == 1
    assert values[0].tag == 'test_scalar'
    assert values[0].simple_value == 1.0

    byte_str = s.SerializeToString()
    s_recovered = summary_pb2.Summary()
    s_recovered.ParseFromString(byte_str)
    assert values[0].tag == s_recovered.value[0].tag
    assert values[0].simple_value == s_recovered.value[0].simple_value 
Example #5
Source File: eval_trainer.py    From Recipe2ImageGAN with MIT License 5 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        #
        netD.zero_grad()
        #
        real_logits = netD(real_imgs)
        fake_logits = netD(fake_imgs.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        #
        errD = errD_real + errD_fake
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #6
Source File: test_summary_writer.py    From tensorboard with Apache License 2.0 5 votes vote down vote up
def test_log_scalar_summary():
    logdir = './experiment/scalar'
    writer = SummaryWriter(logdir)
    for i in range(10):
        writer.add_scalar('test_scalar', i+1)
    writer.close() 
Example #7
Source File: blah.py    From Recipe2ImageGAN with MIT License 5 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        #
        netD.zero_grad()
        #
        real_logits = netD(real_imgs)
        fake_logits = netD(fake_imgs.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        #
        errD = errD_real + errD_fake
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #8
Source File: test_scalar.py    From tensorboard with Apache License 2.0 5 votes vote down vote up
def test_log_scalar_summary():
    logdir = './experiment/scalar'
    writer = FileWriter(logdir)
    for i in range(10):
        s = scalar('scalar', i)
        writer.add_summary(s, i+1)
    writer.flush()
    writer.close() 
Example #9
Source File: test_scalar.py    From tensorboard with Apache License 2.0 5 votes vote down vote up
def test_scalar_summary():
    scalar_value = 1.0
    s = scalar('test_scalar', scalar_value)
    values = s.value
    assert len(values) == 1
    assert values[0].tag == 'test_scalar'
    assert values[0].simple_value == 1.0

    byte_str = s.SerializeToString()
    s_recovered = summary_pb2.Summary()
    s_recovered.ParseFromString(byte_str)
    assert values[0].tag == s_recovered.value[0].tag
    assert values[0].simple_value == s_recovered.value[0].simple_value 
Example #10
Source File: eval_trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu = self.criterion, self.mu

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        wrong_imgs = self.wrong_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        #
        netD.zero_grad()
        # Forward
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        # for real
        real_logits = netD(real_imgs, mu.detach())
        wrong_logits = netD(wrong_imgs, mu.detach())
        fake_logits = netD(fake_imgs.detach(), mu.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_wrong = criterion(wrong_logits[0], fake_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        if len(real_logits) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
            errD_real_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(real_logits[1], real_labels)
            errD_wrong_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(wrong_logits[1], real_labels)
            errD_fake_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(fake_logits[1], fake_labels)
            #
            errD_real = errD_real + errD_real_uncond
            errD_wrong = errD_wrong + errD_wrong_uncond
            errD_fake = errD_fake + errD_fake_uncond
            #
            errD = errD_real + errD_wrong + errD_fake
        else:
            errD = errD_real + 0.5 * (errD_wrong + errD_fake)
        # backward
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #11
Source File: trainer.py    From StackGAN-v2 with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu, logvar = self.criterion, self.mu, self.logvar
        real_labels = self.real_labels[:batch_size]
        for i in range(self.num_Ds):
            outputs = self.netsD[i](self.fake_imgs[i], mu)
            errG = criterion(outputs[0], real_labels)
            if len(outputs) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
                errG_patch = cfg.TRAIN.COEFF.UNCOND_LOSS *\
                    criterion(outputs[1], real_labels)
                errG = errG + errG_patch
            errG_total = errG_total + errG
            if flag == 0:
                summary_D = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_D, count)

        # Compute color consistency losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                    self.summary_writer.add_summary(sum_cov, count)
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        kl_loss = KL_loss(mu, logvar) * cfg.TRAIN.COEFF.KL
        errG_total = errG_total + kl_loss
        errG_total.backward()
        self.optimizerG.step()
        return kl_loss, errG_total 
Example #12
Source File: trainer.py    From StackGAN-v2 with MIT License 4 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu = self.criterion, self.mu

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        wrong_imgs = self.wrong_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        #
        netD.zero_grad()
        # Forward
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        # for real
        real_logits = netD(real_imgs, mu.detach())
        wrong_logits = netD(wrong_imgs, mu.detach())
        fake_logits = netD(fake_imgs.detach(), mu.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_wrong = criterion(wrong_logits[0], fake_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        if len(real_logits) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
            errD_real_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(real_logits[1], real_labels)
            errD_wrong_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(wrong_logits[1], real_labels)
            errD_fake_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(fake_logits[1], fake_labels)
            #
            errD_real = errD_real + errD_real_uncond
            errD_wrong = errD_wrong + errD_wrong_uncond
            errD_fake = errD_fake + errD_fake_uncond
            #
            errD = errD_real + errD_wrong + errD_fake
        else:
            errD = errD_real + 0.5 * (errD_wrong + errD_fake)
        # backward
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #13
Source File: trainer.py    From StackGAN-v2 with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion
        real_labels = self.real_labels[:batch_size]

        for i in range(self.num_Ds):
            netD = self.netsD[i]
            outputs = netD(self.fake_imgs[i])
            errG = criterion(outputs[0], real_labels)
            # errG = self.stage_coeff[i] * errG
            errG_total = errG_total + errG
            if flag == 0:
                summary_G = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_G, count)

        # Compute color preserve losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1

            if flag == 0:
                sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                self.summary_writer.add_summary(sum_mu, count)
                sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                self.summary_writer.add_summary(sum_cov, count)
                if self.num_Ds > 2:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        errG_total.backward()
        self.optimizerG.step()
        return errG_total 
Example #14
Source File: eval_trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion
        real_labels = self.real_labels[:batch_size]

        for i in range(self.num_Ds):
            netD = self.netsD[i]
            outputs = netD(self.fake_imgs[i])
            errG = criterion(outputs[0], real_labels)
            # errG = self.stage_coeff[i] * errG
            errG_total = errG_total + errG
            if flag == 0:
                summary_G = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_G, count)

        # Compute color preserve losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1

            if flag == 0:
                sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                self.summary_writer.add_summary(sum_mu, count)
                sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                self.summary_writer.add_summary(sum_cov, count)
                if self.num_Ds > 2:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        errG_total.backward()
        self.optimizerG.step()
        return errG_total 
Example #15
Source File: trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu, logvar = self.criterion, self.mu, self.logvar
        real_labels = self.real_labels[:batch_size]
        for i in range(self.num_Ds):
            outputs = self.netsD[i](self.fake_imgs[i], mu)
            errG = criterion(outputs[0], real_labels)
            if len(outputs) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
                errG_patch = cfg.TRAIN.COEFF.UNCOND_LOSS *\
                    criterion(outputs[1], real_labels)
                errG = errG + errG_patch
            errG_total = errG_total + errG
            if flag == 0:
                summary_D = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_D, count)

        # Compute color consistency losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                    self.summary_writer.add_summary(sum_cov, count)
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        kl_loss = KL_loss(mu, logvar) * cfg.TRAIN.COEFF.KL
        errG_total = errG_total + kl_loss
        errG_total.backward()
        self.optimizerG.step()
        return kl_loss, errG_total 
Example #16
Source File: trainer.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu = self.criterion, self.mu

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        wrong_imgs = self.wrong_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        #
        netD.zero_grad()
        # Forward
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        # for real
        real_logits = netD(real_imgs, mu.detach())
        wrong_logits = netD(wrong_imgs, mu.detach())
        fake_logits = netD(fake_imgs.detach(), mu.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_wrong = criterion(wrong_logits[0], fake_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        if len(real_logits) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
            errD_real_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(real_logits[1], real_labels)
            errD_wrong_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(wrong_logits[1], real_labels)
            errD_fake_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(fake_logits[1], fake_labels)
            #
            errD_real = errD_real + errD_real_uncond
            errD_wrong = errD_wrong + errD_wrong_uncond
            errD_fake = errD_fake + errD_fake_uncond
            #
            errD = errD_real + errD_wrong + errD_fake
        else:
            errD = errD_real + 0.5 * (errD_wrong + errD_fake)
        # backward
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #17
Source File: blah.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu, logvar = self.criterion, self.mu, self.logvar
        real_labels = self.real_labels[:batch_size]
        for i in range(self.num_Ds):
            outputs = self.netsD[i](self.fake_imgs[i], mu)
            errG = criterion(outputs[0], real_labels)
            if len(outputs) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
                errG_patch = cfg.TRAIN.COEFF.UNCOND_LOSS *\
                    criterion(outputs[1], real_labels)
                errG = errG + errG_patch
            errG_total = errG_total + errG
            if flag == 0:
                summary_D = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_D, count)

        # Compute color consistency losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                    self.summary_writer.add_summary(sum_cov, count)
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1
                if flag == 0:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        kl_loss = KL_loss(mu, logvar) * cfg.TRAIN.COEFF.KL
        errG_total = errG_total + kl_loss
        errG_total.backward()
        self.optimizerG.step()
        return kl_loss, errG_total 
Example #18
Source File: blah.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Dnet(self, idx, count):
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion, mu = self.criterion, self.mu

        netD, optD = self.netsD[idx], self.optimizersD[idx]
        real_imgs = self.real_imgs[idx]
        wrong_imgs = self.wrong_imgs[idx]
        fake_imgs = self.fake_imgs[idx]
        #
        netD.zero_grad()
        # Forward
        real_labels = self.real_labels[:batch_size]
        fake_labels = self.fake_labels[:batch_size]
        # for real
        real_logits = netD(real_imgs, mu.detach())
        wrong_logits = netD(wrong_imgs, mu.detach())
        fake_logits = netD(fake_imgs.detach(), mu.detach())
        #
        errD_real = criterion(real_logits[0], real_labels)
        errD_wrong = criterion(wrong_logits[0], fake_labels)
        errD_fake = criterion(fake_logits[0], fake_labels)
        if len(real_logits) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0:
            errD_real_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(real_logits[1], real_labels)
            errD_wrong_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(wrong_logits[1], real_labels)
            errD_fake_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \
                criterion(fake_logits[1], fake_labels)
            #
            errD_real = errD_real + errD_real_uncond
            errD_wrong = errD_wrong + errD_wrong_uncond
            errD_fake = errD_fake + errD_fake_uncond
            #
            errD = errD_real + errD_wrong + errD_fake
        else:
            errD = errD_real + 0.5 * (errD_wrong + errD_fake)
        # backward
        errD.backward()
        # update parameters
        optD.step()
        # log
        if flag == 0:
            summary_D = summary.scalar('D_loss%d' % idx, errD.data[0])
            self.summary_writer.add_summary(summary_D, count)
        return errD 
Example #19
Source File: blah.py    From Recipe2ImageGAN with MIT License 4 votes vote down vote up
def train_Gnet(self, count):
        self.netG.zero_grad()
        errG_total = 0
        flag = count % 100
        batch_size = self.real_imgs[0].size(0)
        criterion = self.criterion
        real_labels = self.real_labels[:batch_size]

        for i in range(self.num_Ds):
            netD = self.netsD[i]
            outputs = netD(self.fake_imgs[i])
            errG = criterion(outputs[0], real_labels)
            # errG = self.stage_coeff[i] * errG
            errG_total = errG_total + errG
            if flag == 0:
                summary_G = summary.scalar('G_loss%d' % i, errG.data[0])
                self.summary_writer.add_summary(summary_G, count)

        # Compute color preserve losses
        if cfg.TRAIN.COEFF.COLOR_LOSS > 0:
            if self.num_Ds > 1:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-2].detach())
                like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu2 + like_cov2
            if self.num_Ds > 2:
                mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2])
                mu2, covariance2 = \
                    compute_mean_covariance(self.fake_imgs[-3].detach())
                like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2)
                like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \
                    nn.MSELoss()(covariance1, covariance2)
                errG_total = errG_total + like_mu1 + like_cov1

            if flag == 0:
                sum_mu = summary.scalar('G_like_mu2', like_mu2.data[0])
                self.summary_writer.add_summary(sum_mu, count)
                sum_cov = summary.scalar('G_like_cov2', like_cov2.data[0])
                self.summary_writer.add_summary(sum_cov, count)
                if self.num_Ds > 2:
                    sum_mu = summary.scalar('G_like_mu1', like_mu1.data[0])
                    self.summary_writer.add_summary(sum_mu, count)
                    sum_cov = summary.scalar('G_like_cov1', like_cov1.data[0])
                    self.summary_writer.add_summary(sum_cov, count)

        errG_total.backward()
        self.optimizerG.step()
        return errG_total