Python matplotlib.colorbar() Examples
The following are 30
code examples of matplotlib.colorbar().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib
, or try the search function
.
Example #1
Source File: paper_synthetic1.py From defragTrees with MIT License | 6 votes |
def plotTZ(filename=None): cmap = cm.get_cmap('cool') fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]}) ax1.add_patch(pl.Rectangle(xy=[0, 0], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0')) ax1.add_patch(pl.Rectangle(xy=[0.5, 0.5], width=0.5, height=0.5, facecolor=cmap(0.0), linewidth='2.0')) ax1.add_patch(pl.Rectangle(xy=[0, 0.5], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0')) ax1.add_patch(pl.Rectangle(xy=[0.5, 0], width=0.5, height=0.5, facecolor=cmap(1.0), linewidth='2.0')) ax1.set_xlabel('x1', size=22) ax1.set_ylabel('x2', size=22) ax1.set_title('True Data', size=28) colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f') ax2.set_ylabel('Output y', size=22) plt.show() if not filename is None: plt.savefig(filename, format="pdf", bbox_inches="tight") plt.close()
Example #2
Source File: paper_synthetic2.py From defragTrees with MIT License | 6 votes |
def plotTZ(filename=None): t = np.linspace(0, 1, 101) z = 0.25 + 0.5 / (1 + np.exp(- 20 * (t - 0.5))) + 0.05 * np.cos(t * 2 * np.pi) cmap = cm.get_cmap('cool') fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]}) poly1 = [[0, 0]] poly1.extend([[t[i], z[i]] for i in range(t.size)]) poly1.extend([[1, 0], [0, 0]]) poly2 = [[0, 1]] poly2.extend([[t[i], z[i]] for i in range(t.size)]) poly2.extend([[1, 1], [0, 1]]) poly1 = plt.Polygon(poly1,fc=cmap(0.0)) poly2 = plt.Polygon(poly2,fc=cmap(1.0)) ax1.add_patch(poly1) ax1.add_patch(poly2) ax1.set_xlabel('x1', size=22) ax1.set_ylabel('x2', size=22) ax1.set_title('True Data', size=28) colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f') ax2.set_ylabel('Output y', size=22) plt.show() if not filename is None: plt.savefig(filename, format="pdf", bbox_inches="tight") plt.close()
Example #3
Source File: _baseplot_class.py From scanpy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _plot_colorbar(self, color_legend_ax: Axes, normalize): """ Plots a horizontal colorbar given the ax an normalize values Parameters ---------- color_legend_ax normalize Returns ------- None, updates color_legend_ax """ cmap = pl.get_cmap(self.cmap) import matplotlib.colorbar matplotlib.colorbar.ColorbarBase( color_legend_ax, orientation='horizontal', cmap=cmap, norm=normalize ) color_legend_ax.set_title(self.color_legend_title, fontsize='small') color_legend_ax.xaxis.set_tick_params(labelsize='small')
Example #4
Source File: test_colorbar.py From neural-network-animation with MIT License | 6 votes |
def test_colorbar_extension_shape(): '''Test rectangular colorbar extensions.''' # Create figures for uniform and proportionally spaced colorbars. fig1 = _colorbar_extension_shape('uniform') fig2 = _colorbar_extension_shape('proportional')
Example #5
Source File: pyplot.py From neural-network-animation with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret
Example #6
Source File: pyplot.py From twitter-stock-recommendation with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) return ret
Example #7
Source File: pyplot.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) return ret
Example #8
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_SymLogNorm_colorbar(): """ Test un-called SymLogNorm in a colorbar. """ norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1) fig = plt.figure() cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm) plt.close(fig)
Example #9
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_cmap_and_norm_from_levels_and_colors(): data = np.linspace(-2, 4, 49).reshape(7, 7) levels = [-1, 2, 2.5, 3] colors = ['red', 'green', 'blue', 'yellow', 'black'] extend = 'both' cmap, norm = mcolors.from_levels_and_colors(levels, colors, extend=extend) ax = plt.axes() m = plt.pcolormesh(data, cmap=cmap, norm=norm) plt.colorbar(m) # Hide the axes labels (but not the colorbar ones, as they are useful) ax.tick_params(labelleft=False, labelbottom=False)
Example #10
Source File: pyplot.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) return ret
Example #11
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def spect(tr,fmin = 0.1,fmax = None,wlen=10,title=None): import matplotlib as plt if fmax is None: fmax = tr.stats.sampling_rate/2 fig = plt.figure() ax1 = fig.add_axes([0.1, 0.75, 0.7, 0.2]) #[left bottom width height] ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.60], sharex=ax1) ax3 = fig.add_axes([0.83, 0.1, 0.03, 0.6]) #make time vector t = np.arange(tr.stats.npts) / tr.stats.sampling_rate #plot waveform (top subfigure) ax1.plot(t, tr.data, 'k') #plot spectrogram (bottom subfigure) tr2 = tr.copy() fig = tr2.spectrogram(per_lap=0.9,wlen=wlen,show=False, axes=ax2) mappable = ax2.images[0] plt.colorbar(mappable=mappable, cax=ax3) ax2.set_ylim(fmin, fmax) ax2.set_xlabel('Time [s]') ax2.set_ylabel('Frequency [Hz]') if title: plt.suptitle(title) else: plt.suptitle('{}.{}.{} {}'.format(tr.stats.network,tr.stats.station, tr.stats.channel,tr.stats.starttime)) plt.show()
Example #12
Source File: test_colors.py From coffeegrindsize with MIT License | 5 votes |
def test_SymLogNorm_colorbar(): """ Test un-called SymLogNorm in a colorbar. """ norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1) fig = plt.figure() cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm) plt.close(fig)
Example #13
Source File: test_colors.py From coffeegrindsize with MIT License | 5 votes |
def test_cmap_and_norm_from_levels_and_colors(): data = np.linspace(-2, 4, 49).reshape(7, 7) levels = [-1, 2, 2.5, 3] colors = ['red', 'green', 'blue', 'yellow', 'black'] extend = 'both' cmap, norm = mcolors.from_levels_and_colors(levels, colors, extend=extend) ax = plt.axes() m = plt.pcolormesh(data, cmap=cmap, norm=norm) plt.colorbar(m) # Hide the axes labels (but not the colorbar ones, as they are useful) ax.tick_params(labelleft=False, labelbottom=False)
Example #14
Source File: pyplot.py From coffeegrindsize with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) return ret
Example #15
Source File: pyplot.py From CogAlg with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax=cax, ax=ax, **kw) return ret
Example #16
Source File: test_colors.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_SymLogNorm_colorbar(): """ Test un-called SymLogNorm in a colorbar. """ norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1) fig = plt.figure() cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm) plt.close(fig)
Example #17
Source File: test_colors.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cmap_and_norm_from_levels_and_colors(): data = np.linspace(-2, 4, 49).reshape(7, 7) levels = [-1, 2, 2.5, 3] colors = ['red', 'green', 'blue', 'yellow', 'black'] extend = 'both' cmap, norm = mcolors.from_levels_and_colors(levels, colors, extend=extend) ax = plt.axes() m = plt.pcolormesh(data, cmap=cmap, norm=norm) plt.colorbar(m) # Hide the axes labels (but not the colorbar ones, as they are useful) ax.tick_params(labelleft=False, labelbottom=False)
Example #18
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def test_remove_from_figure_no_gridspec(): """ Make sure that `remove_from_figure` removes a colorbar that was created without modifying the gridspec """ _test_remove_from_figure(False)
Example #19
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def test_remove_from_figure_with_gridspec(): """ Make sure that `remove_from_figure` removes the colorbar and properly restores the gridspec """ _test_remove_from_figure(True)
Example #20
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def _test_remove_from_figure(use_gridspec): """ Test `remove_from_figure` with the specified ``use_gridspec`` setting """ fig = plt.figure() ax = fig.add_subplot(111) sc = ax.scatter([1, 2], [3, 4], cmap="spring") sc.set_array(np.array([5, 6])) pre_figbox = np.array(ax.figbox) cb = fig.colorbar(sc, use_gridspec=use_gridspec) fig.subplots_adjust() cb.remove() fig.subplots_adjust() post_figbox = np.array(ax.figbox) assert (pre_figbox == post_figbox).all()
Example #21
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def test_colorbar_single_scatter(): # Issue #2642: if a path collection has only one entry, # the norm scaling within the colorbar must ensure a # finite range, otherwise a zero denominator will occur in _locate. plt.figure() x = np.arange(4) y = x.copy() z = np.ma.masked_greater(np.arange(50, 54), 50) cmap = plt.get_cmap('jet', 16) cs = plt.scatter(x, y, z, c=z, cmap=cmap) plt.colorbar(cs)
Example #22
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def test_colorbar_extension_length(): '''Test variable length colorbar extensions.''' # Create figures for uniform and proportionally spaced colorbars. fig1 = _colorbar_extension_length('uniform') fig2 = _colorbar_extension_length('proportional')
Example #23
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def _colorbar_extension_length(spacing): ''' Produce 12 colorbars with variable length extensions for either uniform or proportional spacing. Helper function for test_colorbar_extension_length. ''' # Get a colormap and appropriate norms for each extension type. cmap, norms = _get_cmap_norms() # Create a figure and adjust whitespace for subplots. fig = plt.figure() fig.subplots_adjust(hspace=.6) for i, extension_type in enumerate(('neither', 'min', 'max', 'both')): # Get the appropriate norm and use it to get colorbar boundaries. norm = norms[extension_type] boundaries = values = norm.boundaries for j, extendfrac in enumerate((None, 'auto', 0.1)): # Create a subplot. cax = fig.add_subplot(12, 1, i*3 + j + 1) # Turn off text and ticks. for item in cax.get_xticklabels() + cax.get_yticklabels() +\ cax.get_xticklines() + cax.get_yticklines(): item.set_visible(False) # Generate the colorbar. cb = ColorbarBase(cax, cmap=cmap, norm=norm, boundaries=boundaries, values=values, extend=extension_type, extendfrac=extendfrac, orientation='horizontal', spacing=spacing) # Return the figure to the caller. return fig
Example #24
Source File: test_colorbar.py From neural-network-animation with MIT License | 5 votes |
def _colorbar_extension_shape(spacing): ''' Produce 4 colorbars with rectangular extensions for either uniform or proportional spacing. Helper function for test_colorbar_extension_shape. ''' # Get a colormap and appropriate norms for each extension type. cmap, norms = _get_cmap_norms() # Create a figure and adjust whitespace for subplots. fig = plt.figure() fig.subplots_adjust(hspace=4) for i, extension_type in enumerate(('neither', 'min', 'max', 'both')): # Get the appropriate norm and use it to get colorbar boundaries. norm = norms[extension_type] boundaries = values = norm.boundaries # Create a subplot. cax = fig.add_subplot(4, 1, i + 1) # Turn off text and ticks. for item in cax.get_xticklabels() + cax.get_yticklabels() +\ cax.get_xticklines() + cax.get_yticklines(): item.set_visible(False) # Generate the colorbar. cb = ColorbarBase(cax, cmap=cmap, norm=norm, boundaries=boundaries, values=values, extend=extension_type, extendrect=True, orientation='horizontal', spacing=spacing) # Return the figure to the caller. return fig
Example #25
Source File: pyplot.py From matplotlib-4-abaqus with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret
Example #26
Source File: pyplot.py From Computable with MIT License | 5 votes |
def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw) draw_if_interactive() return ret
Example #27
Source File: RulePlotter.py From defragTrees with MIT License | 5 votes |
def plotEachRule(mdl, X, d1, d2, alpha=0.8, filename='', rnum=-1, plot_line=[]): if rnum <= 0: rnum = len(mdl.rule_) else: rnum = min(len(mdl.rule_), rnum) m = rnum // 4 if m * 4 < rnum: m += 1 cmap = cm.get_cmap('cool') fig, ax = plt.subplots(m, 4 + 1, figsize=(4 * 4, 3 * m), gridspec_kw = {'width_ratios':[15, 15, 15, 15, 1]}) idx = np.argsort(mdl.weight_[:rnum]) for i in range(rnum): j = i // 4 k = i - 4 * j r = mdl.rule_[idx[i]] box, vmin, vmax = __r2boxWithX(r, X) if mdl.modeltype_ == 'regression': c = cmap(mdl.pred_[idx[i]]) elif mdl.modeltype_ == 'classification': r = mdl.pred_[idx[i]] / max(np.unique(mdl.pred_).size - 1, 1) c = cmap(r) ax[j, k].add_patch(pl.Rectangle(xy=[box[0, d1], box[0, d2]], width=(box[1, d1] - box[0, d1]), height=(box[1, d2] - box[0, d2]), facecolor=c, linewidth='2.0', alpha=alpha)) if len(plot_line) > 0: for l in plot_line: ax[j, k].plot(l[0], l[1], 'k--') ax[j, k].set_xlim([0, 1]) ax[j, k].set_ylim([0, 1]) if k == 3: cbar = colorbar.ColorbarBase(ax[j, -1], cmap=cmap, format='%.1f', ticks=[0.0, 0.5, 1.0]) cbar.ax.set_yticklabels([0.0, 0.5, 1.0]) ax[j, -1].set_ylabel('Predictor y', size=12) plt.show() if not filename == '': plt.savefig(filename, format="pdf", bbox_inches="tight") plt.close()
Example #28
Source File: RulePlotter.py From defragTrees with MIT License | 5 votes |
def plotRule(mdl, X, d1, d2, alpha=0.8, filename='', rnum=-1, plot_line=[]): cmap = cm.get_cmap('cool') fig, (ax1, ax2) = plt.subplots(1, 2, gridspec_kw = {'width_ratios':[19, 1]}) if rnum <= 0: rnum = len(mdl.rule_) else: rnum = min(len(mdl.rule_), rnum) idx = np.argsort(mdl.weight_[:rnum]) for i in range(rnum): r = mdl.rule_[idx[i]] box, vmin, vmax = __r2boxWithX(r, X) if mdl.modeltype_ == 'regression': c = cmap(mdl.pred_[idx[i]]) elif mdl.modeltype_ == 'classification': r = mdl.pred_[idx[i]] / max(np.unique(mdl.pred_).size - 1, 1) c = cmap(r) ax1.add_patch(pl.Rectangle(xy=[box[0, d1], box[0, d2]], width=(box[1, d1] - box[0, d1]), height=(box[1, d2] - box[0, d2]), facecolor=c, linewidth='2.0', alpha=alpha)) if len(plot_line) > 0: for l in plot_line: ax1.plot(l[0], l[1], 'k--') ax1.set_xlabel('x1', size=22) ax1.set_ylabel('x2', size=22) ax1.set_title('Simplified Model (K = %d)' % (rnum,), size=28) colorbar.ColorbarBase(ax2, cmap=cmap, format='%.1f') ax2.set_ylabel('Predictor y', size=22) plt.show() if not filename == '': plt.savefig(filename, format="pdf", bbox_inches="tight") plt.close()
Example #29
Source File: tiles.py From xcube with MIT License | 4 votes |
def get_legend(ctx: ServiceContext, ds_id: str, var_name: str, params: RequestParams): cmap_name = params.get_query_argument('cbar', default=None) cmap_vmin = params.get_query_argument_float('vmin', default=None) cmap_vmax = params.get_query_argument_float('vmax', default=None) cmap_w = params.get_query_argument_int('width', default=None) cmap_h = params.get_query_argument_int('height', default=None) if cmap_name is None or cmap_vmin is None or cmap_vmax is None or cmap_w is None or cmap_h is None: default_cmap_cbar, (default_cmap_vmin, default_cmap_vmax) = ctx.get_color_mapping(ds_id, var_name) cmap_name = cmap_name or default_cmap_cbar cmap_vmin = cmap_vmin or default_cmap_vmin cmap_vmax = cmap_vmax or default_cmap_vmax cmap_w = cmap_w or DEFAULT_CMAP_WIDTH cmap_h = cmap_h or DEFAULT_CMAP_HEIGHT try: _, cmap = get_cmap(cmap_name) except ValueError: raise ServiceResourceNotFoundError(f"color bar {cmap_name!r} not found") fig = matplotlib.figure.Figure(figsize=(cmap_w, cmap_h)) ax1 = fig.add_subplot(1, 1, 1) if '.cpd' in cmap_name: norm, ticks = get_norm(cmap_name) else: norm = matplotlib.colors.Normalize(vmin=cmap_vmin, vmax=cmap_vmax) ticks = None image_legend = matplotlib.colorbar.ColorbarBase(ax1, format='%.1f', ticks=ticks, cmap=cmap, norm=norm, orientation='vertical') image_legend_label = ctx.get_legend_label(ds_id, var_name) if image_legend_label is not None: image_legend.set_label(image_legend_label) fig.patch.set_facecolor('white') fig.patch.set_alpha(0.0) fig.tight_layout() buffer = io.BytesIO() fig.savefig(buffer, format='png') return buffer.getvalue()
Example #30
Source File: test_colorbar.py From neural-network-animation with MIT License | 4 votes |
def test_colorbar_positioning(): data = np.arange(1200).reshape(30, 40) levels = [0, 200, 400, 600, 800, 1000, 1200] # ------------------- plt.figure() plt.contourf(data, levels=levels) plt.colorbar(orientation='horizontal', use_gridspec=False) locations = ['left', 'right', 'top', 'bottom'] plt.figure() for i, location in enumerate(locations): plt.subplot(2, 2, i + 1) plt.contourf(data, levels=levels) plt.colorbar(location=location, use_gridspec=False) # ------------------- plt.figure() # make some other data (random integers) data_2nd = np.array([[2, 3, 2, 3], [1.5, 2, 2, 3], [2, 3, 3, 4]]) # make the random data expand to the shape of the main data data_2nd = np.repeat(np.repeat(data_2nd, 10, axis=1), 10, axis=0) color_mappable = plt.contourf(data, levels=levels, extend='both') # test extend frac here hatch_mappable = plt.contourf(data_2nd, levels=[1, 2, 3], colors='none', hatches=['/', 'o', '+'], extend='max') plt.contour(hatch_mappable, colors='black') plt.colorbar(color_mappable, location='left', label='variable 1', use_gridspec=False) plt.colorbar(hatch_mappable, location='right', label='variable 2', use_gridspec=False) # ------------------- plt.figure() ax1 = plt.subplot(211, anchor='NE', aspect='equal') plt.contourf(data, levels=levels) ax2 = plt.subplot(223) plt.contourf(data, levels=levels) ax3 = plt.subplot(224) plt.contourf(data, levels=levels) plt.colorbar(ax=[ax2, ax3, ax1], location='right', pad=0.0, shrink=0.5, panchor=False, use_gridspec=False) plt.colorbar(ax=[ax2, ax3, ax1], location='left', shrink=0.5, panchor=False, use_gridspec=False) plt.colorbar(ax=[ax1], location='bottom', panchor=False, anchor=(0.8, 0.5), shrink=0.6, use_gridspec=False)