Python nets.nasnet.nasnet.build_nasnet_mobile() Examples
The following are 30
code examples of nets.nasnet.nasnet.build_nasnet_mobile().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.nasnet.nasnet
, or try the search function
.
Example #1
Source File: nasnet_test.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #2
Source File: nasnet_test.py From TwinGAN with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #3
Source File: nasnet_test.py From object_detection_with_tensorflow with MIT License | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #4
Source File: nasnet_test.py From CVTron with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #5
Source File: nasnet_test.py From DeepLab_v3 with MIT License | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #6
Source File: nasnet_test.py From TwinGAN with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #7
Source File: nasnet_test.py From tf-pose with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #8
Source File: nasnet_test.py From tf-pose with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #9
Source File: nasnet_test.py From object_detection_with_tensorflow with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #10
Source File: nasnet_test.py From CVTron with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #11
Source File: nasnet_test.py From style_swap_tensorflow with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #12
Source File: nasnet_test.py From edafa with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #13
Source File: nasnet_test.py From style_swap_tensorflow with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #14
Source File: nasnet_test.py From edafa with MIT License | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #15
Source File: nasnet_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #16
Source File: nasnet_test.py From MAX-Image-Segmenter with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #17
Source File: nasnet_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #18
Source File: nasnet_test.py From CBAM-tensorflow-slim with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #19
Source File: nasnet_test.py From MAX-Image-Segmenter with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #20
Source File: nasnet_test.py From CBAM-tensorflow-slim with MIT License | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #21
Source File: nasnet_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #22
Source File: nasnet_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #23
Source File: nasnet_test.py From DeepLab_v3 with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #24
Source File: nasnet_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testVariablesSetDeviceMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() # Force all Variables to reside on the device. with tf.variable_scope('on_cpu'), tf.device('/cpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) with tf.variable_scope('on_gpu'), tf.device('/gpu:0'): with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): nasnet.build_nasnet_mobile(inputs, num_classes) for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'): self.assertDeviceEqual(v.device, '/cpu:0') for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'): self.assertDeviceEqual(v.device, '/gpu:0')
Example #25
Source File: nasnet_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #26
Source File: nasnet_test.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #27
Source File: nasnet_test.py From SENet-tensorflow-slim with MIT License | 6 votes |
def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
Example #28
Source File: nasnet_test.py From style_swap_tensorflow with Apache License 2.0 | 5 votes |
def testUnknownBatchSizeMobileModel(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 with self.test_session() as sess: inputs = tf.placeholder(tf.float32, (None, height, width, 3)) with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): logits, _ = nasnet.build_nasnet_mobile(inputs, num_classes) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = tf.random_uniform((batch_size, height, width, 3)) sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes))
Example #29
Source File: nasnet_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testAllEndPointsShapesMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): _, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) endpoints_shapes = {'Stem': [batch_size, 28, 28, 88], 'Cell_0': [batch_size, 28, 28, 264], 'Cell_1': [batch_size, 28, 28, 264], 'Cell_2': [batch_size, 28, 28, 264], 'Cell_3': [batch_size, 28, 28, 264], 'Cell_4': [batch_size, 14, 14, 528], 'Cell_5': [batch_size, 14, 14, 528], 'Cell_6': [batch_size, 14, 14, 528], 'Cell_7': [batch_size, 14, 14, 528], 'Cell_8': [batch_size, 7, 7, 1056], 'Cell_9': [batch_size, 7, 7, 1056], 'Cell_10': [batch_size, 7, 7, 1056], 'Cell_11': [batch_size, 7, 7, 1056], 'Reduction_Cell_0': [batch_size, 14, 14, 352], 'Reduction_Cell_1': [batch_size, 7, 7, 704], 'global_pool': [batch_size, 1056], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Logits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape)
Example #30
Source File: nasnet_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testBuildPreLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()): net, end_points = nasnet.build_nasnet_mobile(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1056])