Python features.Features() Examples
The following are 8
code examples of features.Features().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
features
, or try the search function
.
Example #1
Source File: main.py From SaltwashAR with GNU General Public License v3.0 | 6 votes |
def __init__(self): # initialise config self.config_provider = ConfigProvider() # initialise robots self.rocky_robot = RockyRobot() self.sporty_robot = SportyRobot() # initialise webcam self.webcam = Webcam() # initialise markers self.markers = Markers() self.markers_cache = None # initialise features self.features = Features(self.config_provider) # initialise texture self.texture_background = None
Example #2
Source File: strategy.py From trading-server with GNU General Public License v3.0 | 6 votes |
def __init__(self, exchanges, logger, db_prices, db_other, db_client): self.exchanges = exchanges self.logger = logger self.db_prices = db_prices self.db_other = db_other self.db_client = db_client self.db_collections_price = { i.get_name(): db_prices[i.get_name()] for i in self.exchanges} # Save-later queue. self.signals_save_to_db = queue.Queue(0) # DataFrame container: data[exchange][symbol][timeframe]. self.data = {} self.init_dataframes(empty=True) # Strategy models. self.models = self.load_models(self.logger) # Signal container: signals[exchange][symbol][timeframe]. self.signals = {} # persistent reference to features library. self.feature_ref = Features()
Example #3
Source File: selective_search.py From selective_search_py with MIT License | 5 votes |
def hierarchical_segmentation(I, k = 100, feature_mask = features.SimilarityMask(1, 1, 1, 1)): F0, n_region = segment.segment_label(I, 0.8, k, 100) adj_mat, A0 = _calc_adjacency_matrix(F0, n_region) feature_extractor = features.Features(I, F0, n_region) # stores list of regions sorted by their similarity S = _build_initial_similarity_set(A0, feature_extractor) # stores region label and its parent (empty if initial). R = {i : () for i in range(n_region)} A = [A0] # stores adjacency relation for each step F = [F0] # stores label image for each step # greedy hierarchical grouping loop while len(S): (s, (i, j)) = S.pop() t = feature_extractor.merge(i, j) # record merged region (larger region should come first) R[t] = (i, j) if feature_extractor.size[j] < feature_extractor.size[i] else (j, i) Ak = _new_adjacency_dict(A[-1], i, j, t) A.append(Ak) S = _merge_similarity_set(feature_extractor, Ak, S, i, j, t) F.append(_new_label_image(F[-1], i, j, t)) # bounding boxes for each hierarchy L = feature_extractor.bbox return (R, F, L)
Example #4
Source File: test_features.py From selective_search_py with MIT License | 5 votes |
def setup_method(self, method = None, w = 10, h = 10): self.h, self.w = h, w image = numpy.zeros((self.h, self.w, 3), dtype=numpy.uint8) label = numpy.zeros((self.h, self.w), dtype=int) self.f = features.Features(image, label, 1)
Example #5
Source File: test_features.py From selective_search_py with MIT License | 5 votes |
def setup_method(self, method): image = numpy.zeros((10, 10, 3), dtype=numpy.uint8) label = numpy.zeros((10, 10), dtype=int) self.f = features.Features(image, label, 1)
Example #6
Source File: test_features.py From selective_search_py with MIT License | 5 votes |
def setup_method(self, method): image = numpy.zeros((10, 10, 3), dtype=numpy.uint8) label = numpy.zeros((10, 10), dtype=int) self.f = features.Features(image, label, 1)
Example #7
Source File: test_features.py From selective_search_py with MIT License | 5 votes |
def setup_method(self, method): self.dummy_image = numpy.zeros((10, 10, 3), dtype=numpy.uint8) self.dummy_label = numpy.zeros((10, 10), dtype=int) self.f = features.Features(self.dummy_image, self.dummy_label, 1)
Example #8
Source File: test_features.py From selective_search_py with MIT License | 5 votes |
def setup_method(self, method): dummy_image = numpy.zeros((10, 10, 3), dtype=numpy.uint8) dummy_label = numpy.zeros((10, 10), dtype=int) self.f = features.Features(dummy_image, dummy_label, 1)