Python mne.datasets.sample.data_path() Examples
The following are 2
code examples of mne.datasets.sample.data_path().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mne.datasets.sample
, or try the search function
.
Example #1
Source File: source_estimates.py From mmvt with GNU General Public License v3.0 | 6 votes |
def mne_python(): subjects_dir = data_path + '/subjects' # Read data evoked = mne.read_evokeds(fname_evoked, condition='Left Auditory', baseline=(None, 0)) fwd = mne.read_forward_solution(fname_fwd) cov = mne.read_cov(fname_cov) inv = make_inverse_operator(evoked.info, fwd, cov, loose=0., depth=0.8, verbose=True) snr = 3.0 lambda2 = 1.0 / snr ** 2 kwargs = dict(initial_time=0.08, hemi='both', subjects_dir=subjects_dir, size=(600, 600)) stc = abs(apply_inverse(evoked, inv, lambda2, 'MNE', verbose=True)) stc = mne.SourceEstimate(stc.data * 1e10, stc.vertices, stc.tmin , stc.tstep, subject='sample') stc.save(data_path + '/MEG/sample/sample_audvis_MNE') # brain = stc.plot(figure=1, **kwargs) # brain.add_text(0.1, 0.9, 'MNE', 'title', font_size=14)
Example #2
Source File: source_estimate_power.py From mmvt with GNU General Public License v3.0 | 5 votes |
def init_data(): data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' tmin, tmax, event_id = -0.2, 0.5, 1 # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) # Setting the label label = mne.read_label(data_path + '/MEG/sample/labels/Aud-lh.label') include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') # Load condition 1 event_id = 1 # Use linear detrend to reduce any edge artifacts epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6), preload=True, detrend=1) return epochs, inverse_operator, label