Python mne.datasets.sample.data_path() Examples

The following are 2 code examples of mne.datasets.sample.data_path(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mne.datasets.sample , or try the search function .
Example #1
Source File: source_estimates.py    From mmvt with GNU General Public License v3.0 6 votes vote down vote up
def mne_python():
    subjects_dir = data_path + '/subjects'

    # Read data
    evoked = mne.read_evokeds(fname_evoked, condition='Left Auditory',
                              baseline=(None, 0))
    fwd = mne.read_forward_solution(fname_fwd)
    cov = mne.read_cov(fname_cov)

    inv = make_inverse_operator(evoked.info, fwd, cov, loose=0., depth=0.8,
                                verbose=True)

    snr = 3.0
    lambda2 = 1.0 / snr ** 2
    kwargs = dict(initial_time=0.08, hemi='both', subjects_dir=subjects_dir,
                  size=(600, 600))

    stc = abs(apply_inverse(evoked, inv, lambda2, 'MNE', verbose=True))
    stc = mne.SourceEstimate(stc.data * 1e10, stc.vertices, stc.tmin , stc.tstep, subject='sample')
    stc.save(data_path + '/MEG/sample/sample_audvis_MNE')
    # brain = stc.plot(figure=1, **kwargs)
    # brain.add_text(0.1, 0.9, 'MNE', 'title', font_size=14) 
Example #2
Source File: source_estimate_power.py    From mmvt with GNU General Public License v3.0 5 votes vote down vote up
def init_data():
    data_path = sample.data_path()
    raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
    fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
    tmin, tmax, event_id = -0.2, 0.5, 1

    # Setup for reading the raw data
    raw = io.read_raw_fif(raw_fname)
    events = mne.find_events(raw, stim_channel='STI 014')
    inverse_operator = read_inverse_operator(fname_inv)

    # Setting the label
    label = mne.read_label(data_path + '/MEG/sample/labels/Aud-lh.label')

    include = []
    raw.info['bads'] += ['MEG 2443', 'EEG 053']  # bads + 2 more

    # picks MEG gradiometers
    picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True,
                           stim=False, include=include, exclude='bads')

    # Load condition 1
    event_id = 1
    # Use linear detrend to reduce any edge artifacts
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), reject=dict(grad=4000e-13, eog=150e-6),
                        preload=True, detrend=1)
    return epochs, inverse_operator, label