Python numpy.ma.masked_less_equal() Examples
The following are 17
code examples of numpy.ma.masked_less_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: colors.py From matplotlib-4-abaqus with MIT License | 5 votes |
def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is not None and self.vmax is not None: return A = ma.masked_less_equal(A, 0, copy=False) if self.vmin is None: self.vmin = ma.min(A) if self.vmax is None: self.vmax = ma.max(A)
Example #2
Source File: regular_surface.py From xtgeo with GNU Lesser General Public License v3.0 | 5 votes |
def operation(self, opname, value): """Do operation on map values. Do operations on the current map values. Valid operations are: * 'elilt' or 'eliminatelessthan': Eliminate less than <value> * 'elile' or 'eliminatelessequal': Eliminate less or equal than <value> Args: opname (str): Name of operation. See list above. values (*): A scalar number (float) or a tuple of two floats, dependent on operation opname. Examples:: surf.operation('elilt', 200) # set all values < 200 as undef """ if opname in ("elilt", "eliminatelessthan"): self._values = ma.masked_less(self._values, value) elif opname in ("elile", "eliminatelessequal"): self._values = ma.masked_less_equal(self._values, value) else: raise ValueError("Invalid operation name") # ================================================================================== # Operations restricted to inside/outside polygons # ==================================================================================
Example #3
Source File: colors.py From neural-network-animation with MIT License | 5 votes |
def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is not None and self.vmax is not None: return A = ma.masked_less_equal(A, 0, copy=False) if self.vmin is None: self.vmin = ma.min(A) if self.vmax is None: self.vmax = ma.max(A)
Example #4
Source File: colors.py From neural-network-animation with MIT License | 5 votes |
def autoscale(self, A): """ Set *vmin*, *vmax* to min, max of *A*. """ A = ma.masked_less_equal(A, 0, copy=False) self.vmin = ma.min(A) self.vmax = ma.max(A)
Example #5
Source File: colors.py From neural-network-animation with MIT License | 5 votes |
def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) result = ma.masked_less_equal(result, 0, copy=False) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin <= 0: raise ValueError("values must all be positive") elif vmin == vmax: result.fill(0) else: if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = result.data mask = result.mask if mask is np.ma.nomask: mask = (resdat <= 0) else: mask |= resdat <= 0 cbook._putmask(resdat, mask, 1) np.log(resdat, resdat) resdat -= np.log(vmin) resdat /= (np.log(vmax) - np.log(vmin)) result = np.ma.array(resdat, mask=mask, copy=False) if is_scalar: result = result[0] return result
Example #6
Source File: colors.py From matplotlib-4-abaqus with MIT License | 5 votes |
def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' A = ma.masked_less_equal(A, 0, copy=False) self.vmin = ma.min(A) self.vmax = ma.max(A)
Example #7
Source File: colors.py From matplotlib-4-abaqus with MIT License | 5 votes |
def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) result = ma.masked_less_equal(result, 0, copy=False) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin <= 0: raise ValueError("values must all be positive") elif vmin == vmax: result.fill(0) else: if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = result.data mask = result.mask if mask is np.ma.nomask: mask = (resdat <= 0) else: mask |= resdat <= 0 cbook._putmask(resdat, mask, 1) np.log(resdat, resdat) resdat -= np.log(vmin) resdat /= (np.log(vmax) - np.log(vmin)) result = np.ma.array(resdat, mask=mask, copy=False) if is_scalar: result = result[0] return result
Example #8
Source File: stats.py From Computable with MIT License | 5 votes |
def mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #9
Source File: colors.py From Computable with MIT License | 5 votes |
def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is not None and self.vmax is not None: return A = ma.masked_less_equal(A, 0, copy=False) if self.vmin is None: self.vmin = ma.min(A) if self.vmax is None: self.vmax = ma.max(A)
Example #10
Source File: colors.py From Computable with MIT License | 5 votes |
def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' A = ma.masked_less_equal(A, 0, copy=False) self.vmin = ma.min(A) self.vmax = ma.max(A)
Example #11
Source File: colors.py From Computable with MIT License | 5 votes |
def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) result = ma.masked_less_equal(result, 0, copy=False) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin <= 0: raise ValueError("values must all be positive") elif vmin == vmax: result.fill(0) else: if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = result.data mask = result.mask if mask is np.ma.nomask: mask = (resdat <= 0) else: mask |= resdat <= 0 cbook._putmask(resdat, mask, 1) np.log(resdat, resdat) resdat -= np.log(vmin) resdat /= (np.log(vmax) - np.log(vmin)) result = np.ma.array(resdat, mask=mask, copy=False) if is_scalar: result = result[0] return result
Example #12
Source File: stats.py From lambda-packs with MIT License | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #13
Source File: stats.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #14
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #15
Source File: stats.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #16
Source File: mstats_basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am
Example #17
Source File: mstats_basic.py From lambda-packs with MIT License | 4 votes |
def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am