Python numpy.ma.allclose() Examples
The following are 5
code examples of numpy.ma.allclose().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: mstats_basic.py From lambda-packs with MIT License | 6 votes |
def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data
Example #2
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data
Example #3
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data
Example #4
Source File: mstats_basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If an `f_oneway()` run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data
Example #5
Source File: test_mapchete.py From mapchete with MIT License | 5 votes |
def test_processing(mp_tmpdir, cleantopo_br, cleantopo_tl): """Test correct processing (read and write) outputs.""" for cleantopo_process in [cleantopo_br.path, cleantopo_tl.path]: with mapchete.open(cleantopo_process) as mp: for zoom in range(6): tiles = [] for tile in mp.get_process_tiles(zoom): output = mp.execute(tile) tiles.append((tile, output)) assert isinstance(output, ma.MaskedArray) assert output.shape == output.shape assert not ma.all(output.mask) mp.write(tile, output) mosaic = create_mosaic(tiles) try: temp_vrt = os.path.join(mp_tmpdir, str(zoom)+".vrt") gdalbuildvrt = "gdalbuildvrt %s %s/%s/*/*.tif > /dev/null" % ( temp_vrt, mp.config.output.path, zoom) os.system(gdalbuildvrt) with rasterio.open(temp_vrt, "r") as testfile: for file_item, mosaic_item in zip( testfile.meta["transform"], mosaic.affine ): assert file_item == mosaic_item band = testfile.read(1, masked=True) assert band.shape == mosaic.data.shape assert ma.allclose(band, mosaic.data) assert ma.allclose(band.mask, mosaic.data.mask) finally: shutil.rmtree(mp_tmpdir, ignore_errors=True)