Python numpy.ma.expand_dims() Examples

The following are 8 code examples of numpy.ma.expand_dims(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.ma , or try the search function .
Example #1
Source File: mstats_basic.py    From Computable with MIT License 6 votes vote down vote up
def moment(a, moment=1, axis=0):
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        mn = ma.expand_dims(a.mean(axis=axis), axis)
        s = ma.power((a-mn), moment)
        return s.mean(axis=axis) 
Example #2
Source File: gtiff.py    From mapchete with MIT License 6 votes vote down vote up
def read(self, indexes=None, **kwargs):
        """
        Read reprojected & resampled input data.

        Parameters
        ----------
        indexes : integer or list
            band number or list of band numbers

        Returns
        -------
        data : array
        """
        band_indexes = self._get_band_indexes(indexes)
        arr = self.process.get_raw_output(self.tile)
        return (
            arr[band_indexes[0] - 1]
            if len(band_indexes) == 1
            else ma.concatenate([ma.expand_dims(arr[i - 1], 0) for i in band_indexes])
        ) 
Example #3
Source File: UncertMath.py    From westpa with MIT License 5 votes vote down vote up
def concatenate(self,value,axis=0):
        """ Concatentate UncertContainer value to self.
            Assumes that if dimensions of self and value do not match, to 
            add a np.newaxis along axis of value
        """

        if isinstance(value,UncertContainer):
            if value.vals.ndim == self.vals.ndim:
                vals = value.vals
                dmin = value.dmin
                dmax = value.dmax
                wt = value.wt
                uncert = value.uncert
                mask = value.mask
            elif (value.vals.ndim + 1) == self.vals.ndim:
                vals =  ma.expand_dims(value.vals,axis)
                dmin =  ma.expand_dims(value.dmin,axis)
                dmax =  ma.expand_dims(value.dmax,axis)
                wt =  ma.expand_dims(value.wt,axis)
                uncert =  ma.expand_dims(value.uncert,axis)
                mask =  np.expand_dims(value.mask,axis)
            else:
                raise ValueError('Could not propery match dimensionality')
                
            self.vals = ma.concatenate((self.vals,vals),axis=axis)
            self.dmin = ma.concatenate((self.dmin,dmin),axis=axis)
            self.dmax = ma.concatenate((self.dmax,dmax),axis=axis)
            self.wt = ma.concatenate((self.wt,wt),axis=axis)
            self.uncert = ma.concatenate((self.uncert,uncert),axis=axis)
            
            self.mask = np.concatenate((self.mask,mask),axis=axis)
        else:
            raise ValueError('Can only concatenate with an UncertContainer object') 
Example #4
Source File: UncertMath.py    From westpa with MIT License 4 votes vote down vote up
def weighted_average(self,axis=0,expaxis=None):
        """ Calculate weighted average of data along axis
            after optionally inserting a new dimension into the
            shape array at position expaxis
        """

        if expaxis is not None:
            vals = ma.expand_dims(self.vals,expaxis)
            dmin = ma.expand_dims(self.dmin,expaxis)
            dmax = ma.expand_dims(self.dmax,expaxis)
            wt = ma.expand_dims(self.wt,expaxis)
        else:
            vals = self.vals
            wt = self.wt
            dmin = self.dmin
            dmax = self.dmax
        
        # Get average value
        avg,norm = ma.average(vals,axis=axis,weights=wt,returned=True)
        avg_ex = ma.expand_dims(avg,0)

        # Calculate weighted uncertainty
        wtmax = ma.max(wt,axis=axis)
        neff = norm/wtmax       # Effective number of samples based on uncertainties

        # Seeking max deviation from the average; if above avg use max, if below use min
        term = np.empty_like(vals)
        
        indices = np.where(vals > avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (dmax[ii] - avg_ex[jj])**2
        
        indices = np.where(vals <= avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (avg_ex[jj] - dmin[ii])**2
        
        dsum = ma.sum(term*wt,axis=0)     # Sum for weighted average of deviations

        dev = 0.5*np.sqrt(dsum/(norm*neff))
        
        if isinstance(avg,(float,np.float)):
            avg = avg_ex

        tmp_min = avg - dev
        ii = np.where(tmp_min < 0)
        tmp_min[ii] = TOL*avg[ii]
        
        return UncertContainer(avg,tmp_min,avg+dev) 
Example #5
Source File: mstats_basic.py    From lambda-packs with MIT License 4 votes vote down vote up
def moment(a, moment=1, axis=0):
    """
    Calculates the nth moment about the mean for a sample.

    Parameters
    ----------
    a : array_like
       data
    moment : int, optional
       order of central moment that is returned
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    Notes
    -----
    For more details about `moment`, see `stats.moment`.

    """
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - ma.expand_dims(a.mean(axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return s.mean(axis) 
Example #6
Source File: mstats_basic.py    From GraphicDesignPatternByPython with MIT License 4 votes vote down vote up
def moment(a, moment=1, axis=0):
    """
    Calculates the nth moment about the mean for a sample.

    Parameters
    ----------
    a : array_like
       data
    moment : int, optional
       order of central moment that is returned
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    Notes
    -----
    For more details about `moment`, see `stats.moment`.

    """
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - ma.expand_dims(a.mean(axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return s.mean(axis) 
Example #7
Source File: mstats_basic.py    From Splunking-Crime with GNU Affero General Public License v3.0 4 votes vote down vote up
def moment(a, moment=1, axis=0):
    """
    Calculates the nth moment about the mean for a sample.

    Parameters
    ----------
    a : array_like
       data
    moment : int, optional
       order of central moment that is returned
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    Notes
    -----
    For more details about `moment`, see `stats.moment`.

    """
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - ma.expand_dims(a.mean(axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return s.mean(axis) 
Example #8
Source File: raster.py    From mapchete with MIT License 4 votes vote down vote up
def prepare_array(data, masked=True, nodata=0, dtype="int16"):
    """
    Turn input data into a proper array for further usage.

    Output array is always 3-dimensional with the given data type. If the output
    is masked, the fill_value corresponds to the given nodata value and the
    nodata value will be burned into the data array.

    Parameters
    ----------
    data : array or iterable
        array (masked or normal) or iterable containing arrays
    nodata : integer or float
        nodata value (default: 0) used if input is not a masked array and
        for output array
    masked : bool
        return a NumPy Array or a NumPy MaskedArray (default: True)
    dtype : string
        data type of output array (default: "int16")

    Returns
    -------
    array : array
    """
    # input is iterable
    if isinstance(data, (list, tuple)):
        return _prepare_iterable(data, masked, nodata, dtype)

    # special case if a 2D single band is provided
    elif isinstance(data, np.ndarray) and data.ndim == 2:
        data = ma.expand_dims(data, axis=0)

    # input is a masked array
    if isinstance(data, ma.MaskedArray):
        return _prepare_masked(data, masked, nodata, dtype)

    # input is a NumPy array
    elif isinstance(data, np.ndarray):
        if masked:
            return ma.masked_values(data.astype(dtype, copy=False), nodata, copy=False)
        else:
            return data.astype(dtype, copy=False)
    else:
        raise ValueError(
            "Data must be array, masked array or iterable containing arrays. "
            "Current data: %s (%s)" % (data, type(data))
        )