Python numpy.ma.where() Examples
The following are 30
code examples of numpy.ma.where().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: f_oneway (*args) where *args is 2 or more arrays, one per treatment group Returns: f-value, probability """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = stats.fprob(dfbg,dfwg,f) return f, prob
Example #2
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def skewtest(a, axis=0): a, axis = _chk_asarray(a, axis) if axis is None: a = a.ravel() axis = 0 b2 = skew(a,axis) n = a.count(axis) if np.min(n) < 8: warnings.warn( "skewtest only valid for n>=8 ... continuing anyway, n=%i" % np.min(n)) y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2))) beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9)) W2 = -1 + ma.sqrt(2*(beta2-1)) delta = 1/ma.sqrt(0.5*ma.log(W2)) alpha = ma.sqrt(2.0/(W2-1)) y = ma.where(y == 0, 1, y) Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) return Z, (1.0 - stats.zprob(Z))*2
Example #3
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def kurtosis(a, axis=0, fisher=True, bias=True): a, axis = _chk_asarray(a, axis) m2 = moment(a,2,axis) m4 = moment(a,4,axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: n = a.count(axis) can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) if can_correct.any(): n = np.extract(can_correct, n) m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if fisher: return vals - 3 else: return vals
Example #4
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def skew(a, axis=0, bias=True): a, axis = _chk_asarray(a,axis) n = a.count(axis) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m3 / m2**1.5) finally: np.seterr(**olderr) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) return vals
Example #5
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): """ Trims the smallest and largest data values. Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and ``int(proportiontocut * n)`` largest values of data along the given axis, where n is the number of unmasked values before trimming. Parameters ---------- data : ndarray Data to trim. proportiontocut : float, optional Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is ``(1 - 2*proportiontocut) * n``. Default is 0.2. inclusive : {(bool, bool) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : int, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ return trimr(data, limits=(proportiontocut,proportiontocut), inclusive=inclusive, axis=axis)
Example #6
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #7
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a
Example #8
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #9
Source File: scale.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log
Example #10
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output
Example #11
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output
Example #12
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x)
Example #13
Source File: scale.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #14
Source File: mstats_basic.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays, one per treatment group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf return F_onewayResult(f, prob)
Example #15
Source File: scale.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log
Example #16
Source File: scale.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #17
Source File: ASCube.py From pyASC with MIT License | 5 votes |
def iterate(self, arr): # iterate through a matrix and accept or reject various indices m = np.mean(arr) s = np.std(arr) ym = ma.masked_inside(arr, m-5*s, m+5*s) return ma.where(ym == False)
Example #18
Source File: mstats_basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def argstoarray(*args): """ Constructs a 2D array from a group of sequences. Sequences are filled with missing values to match the length of the longest sequence. Parameters ---------- args : sequences Group of sequences. Returns ------- argstoarray : MaskedArray A ( `m` x `n` ) masked array, where `m` is the number of arguments and `n` the length of the longest argument. Notes ----- `numpy.ma.row_stack` has identical behavior, but is called with a sequence of sequences. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output
Example #19
Source File: mstats_basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x)
Example #20
Source File: mstats_basic.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. Notes ----- For more details about `normaltest`, see `stats.normaltest`. """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
Example #21
Source File: scale.py From coffeegrindsize with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log
Example #22
Source File: scale.py From coffeegrindsize with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #23
Source File: scale.py From twitter-stock-recommendation with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log
Example #24
Source File: scale.py From twitter-stock-recommendation with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #25
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a
Example #26
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def _betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x)
Example #27
Source File: mstats_basic.py From lambda-packs with MIT License | 5 votes |
def normaltest(a, axis=0): """ Tests whether a sample differs from a normal distribution. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. Notes ----- For more details about `normaltest`, see `stats.normaltest`. """ a, axis = _chk_asarray(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
Example #28
Source File: scale.py From Computable with MIT License | 5 votes |
def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a
Example #29
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log
Example #30
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp