Python numpy.ma.power() Examples
The following are 30
code examples of numpy.ma.power().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.ma
, or try the search function
.
Example #1
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def moment(a, moment=1, axis=0): a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: mn = ma.expand_dims(a.mean(axis=axis), axis) s = ma.power((a-mn), moment) return s.mean(axis=axis)
Example #2
Source File: mstats_basic.py From Computable with MIT License | 6 votes |
def kurtosistest(a, axis=0): a, axis = _chk_asarray(a, axis) n = a.count(axis=axis).astype(float) if np.min(n) < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5)) x = (b2-E)/ma.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2./(9.0*A) denom = 1 + x*ma.sqrt(2/(A-4.0)) denom[denom < 0] = masked term2 = ma.power((1-2.0/A)/denom,1/3.0) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) return Z, (1.0-stats.zprob(Z))*2
Example #3
Source File: scale.py From coffeegrindsize with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #4
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a) / self.base
Example #5
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #6
Source File: colors.py From neural-network-animation with MIT License | 5 votes |
def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) gamma = self.gamma vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: res_mask = result.data < 0 if clip: mask = ma.getmask(result) result = ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) resdat = result.data resdat -= vmin np.power(resdat, gamma, resdat) resdat /= (vmax - vmin) ** gamma result = np.ma.array(resdat, mask=result.mask, copy=False) result[res_mask] = 0 if is_scalar: result = result[0] return result
Example #7
Source File: colors.py From neural-network-animation with MIT License | 5 votes |
def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") gamma = self.gamma vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return ma.power(value, 1. / gamma) * (vmax - vmin) + vmin else: return pow(value, 1. / gamma) * (vmax - vmin) + vmin
Example #8
Source File: scale.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #9
Source File: scale.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #10
Source File: scale.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #11
Source File: scale.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #12
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(np.e, a) / np.e
Example #13
Source File: scale.py From coffeegrindsize with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #14
Source File: scale.py From CogAlg with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #15
Source File: scale.py From CogAlg with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #16
Source File: scale.py From CogAlg with MIT License | 5 votes |
def transform_non_affine(self, a): abs_a = np.abs(a) with np.errstate(divide="ignore", invalid="ignore"): out = np.sign(a) * self.linthresh * ( np.power(self.base, abs_a / self.linthresh - self._linscale_adj)) inside = abs_a <= self.invlinthresh out[inside] = a[inside] / self._linscale_adj return out
Example #17
Source File: scale.py From twitter-stock-recommendation with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a)
Example #18
Source File: scale.py From twitter-stock-recommendation with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #19
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(np.e, a) / np.e
Example #20
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(10.0, a) / 10.0
Example #21
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(2.0, a) / 2.0
Example #22
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(np.e, a) / np.e
Example #23
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a) / self.base
Example #24
Source File: scale.py From Computable with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #25
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(10.0, a) / 10.0
Example #26
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(2.0, a) / 2.0
Example #27
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(self.base, a) / self.base
Example #28
Source File: scale.py From matplotlib-4-abaqus with MIT License | 5 votes |
def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp
Example #29
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(10.0, a) / 10.0
Example #30
Source File: scale.py From neural-network-animation with MIT License | 5 votes |
def transform_non_affine(self, a): return ma.power(2.0, a) / 2.0