Python sklearn.dummy.DummyRegressor() Examples
The following are 30
code examples of sklearn.dummy.DummyRegressor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.dummy
, or try the search function
.
Example #1
Source File: test_voting.py From Mastering-Elasticsearch-7.0 with MIT License | 7 votes |
def test_notfitted(): eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()), ('lr2', LogisticRegression())], voting='soft') ereg = VotingRegressor([('dr', DummyRegressor())]) msg = ("This %s instance is not fitted yet. Call \'fit\'" " with appropriate arguments before using this method.") assert_raise_message(NotFittedError, msg % 'VotingClassifier', eclf.predict, X) assert_raise_message(NotFittedError, msg % 'VotingClassifier', eclf.predict_proba, X) assert_raise_message(NotFittedError, msg % 'VotingClassifier', eclf.transform, X) assert_raise_message(NotFittedError, msg % 'VotingRegressor', ereg.predict, X_r) assert_raise_message(NotFittedError, msg % 'VotingRegressor', ereg.transform, X_r)
Example #2
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_unseen_groups_shrinkage(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="constant", alpha=0.1 ) shrink_est.fit(X, y) unseen_group = pd.DataFrame( {"Planet": ["Earth"], "Country": ["DE"], "City": ["Hamburg"]} ) with pytest.raises(ValueError) as e: shrink_est.predict(X=pd.concat([unseen_group] * 4, axis=0)) assert "found a group" in str(e)
Example #3
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
Example #4
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_constant_shrinkage(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="constant", use_global_model=False, alpha=0.1, ) shrinkage_factors = np.array([0.01, 0.09, 0.9]) shrink_est.fit(X, y) expected_prediction = [ np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors, np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors, np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors, np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors, ] assert expected_prediction == shrink_est.predict(X).tolist()
Example #5
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_relative_shrinkage(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="relative", use_global_model=False, ) shrinkage_factors = np.array([4, 2, 1]) / 7 shrink_est.fit(X, y) expected_prediction = [ np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors, np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors, np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors, np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors, ] assert expected_prediction == shrink_est.predict(X).tolist()
Example #6
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_min_n_obs_shrinkage(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="min_n_obs", use_global_model=False, min_n_obs=2, ) shrink_est.fit(X, y) expected_prediction = [means["NL"], means["NL"], means["BE"], means["BE"]] assert expected_prediction == shrink_est.predict(X).tolist()
Example #7
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_min_n_obs_shrinkage_too_little_obs(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] too_big_n_obs = X.shape[0] + 1 shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="min_n_obs", use_global_model=False, min_n_obs=too_big_n_obs, ) with pytest.raises(ValueError) as e: shrink_est.fit(X, y) assert ( f"There is no group with size greater than or equal to {too_big_n_obs}" in str(e) )
Example #8
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_custom_shrinkage_wrong_length(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] def shrinkage_func(group_sizes): n = len(group_sizes) return np.repeat(1 / n, n + 1) with pytest.raises(ValueError) as e: shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage=shrinkage_func, use_global_model=False, ) shrink_est.fit(X, y) assert ".shape should be " in str(e)
Example #9
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_invalid_shrinkage(shrinkage_data, wrong_func): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] with pytest.raises(ValueError) as e: shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage=wrong_func, use_global_model=False, ) shrink_est.fit(X, y) assert "Invalid shrinkage specified." in str(e)
Example #10
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_unexisting_shrinkage_func(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] with pytest.raises(ValueError) as e: unexisting_func = "some_highly_unlikely_function_name" shrink_est = GroupedEstimator( estimator=DummyRegressor(), groups=["Planet", "Country"], shrinkage=unexisting_func, ) shrink_est.fit(X, y) assert "shrinkage function" in str(e)
Example #11
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_custom_shrinkage_raises_error(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] def shrinkage_func(group_sizes): raise KeyError("This function is bad and you should feel bad") with pytest.raises(ValueError) as e: shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage=shrinkage_func, use_global_model=False, ) shrink_est.fit(X, y) assert "you should feel bad" in str( e ) and "while checking the shrinkage function" in str(e)
Example #12
Source File: test_grouped_model.py From scikit-lego with MIT License | 6 votes |
def test_predict_missing_group_column(shrinkage_data): df, means = shrinkage_data X, y = df.drop(columns="Target"), df["Target"] shrink_est = GroupedEstimator( DummyRegressor(), ["Planet", "Country", "City"], shrinkage="constant", use_global_model=False, alpha=0.1, ) shrink_est.fit(X, y) with pytest.raises(ValueError) as e: shrink_est.predict(X.drop(columns=["Country"])) assert "group columns" in str(e)
Example #13
Source File: __init__.py From sklearn2pmml with GNU Affero General Public License v3.0 | 6 votes |
def test_fit_verify(self): pipeline = PMMLPipeline([("estimator", DummyRegressor())]) self.assertFalse(hasattr(pipeline, "active_fields")) self.assertFalse(hasattr(pipeline, "target_fields")) X = DataFrame([[1, 0], [2, 0], [3, 0]], columns = ["X1", "X2"]) y = Series([0.5, 1.0, 1.5], name = "y") pipeline.fit(X, y) self.assertEqual(["X1", "X2"], pipeline.active_fields.tolist()) self.assertEqual("y", pipeline.target_fields.tolist()) X.columns = ["x1", "x2"] pipeline.fit(X, y) self.assertEqual(["x1", "x2"], pipeline.active_fields.tolist()) self.assertEqual("y", pipeline.target_fields.tolist()) self.assertFalse(hasattr(pipeline, "verification")) pipeline.verify(X.sample(2)) self.assertEqual(2, len(pipeline.verification.active_values)) self.assertEqual(2, len(pipeline.verification.target_values)) X.columns = ["x2", "x1"] with self.assertRaises(ValueError): pipeline.verify(X.sample(2))
Example #14
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est)
Example #15
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))
Example #16
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y)
Example #17
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
Example #18
Source File: test_weight_boosting.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_multidimensional_X(): """ Check that the AdaBoost estimators can work with n-dimensional data matrix """ from sklearn.dummy import DummyClassifier, DummyRegressor rng = np.random.RandomState(0) X = rng.randn(50, 3, 3) yc = rng.choice([0, 1], 50) yr = rng.randn(50) boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent')) boost.fit(X, yc) boost.predict(X) boost.predict_proba(X) boost = AdaBoostRegressor(DummyRegressor()) boost.fit(X, yr) boost.predict(X)
Example #19
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est)
Example #20
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est)
Example #21
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))
Example #22
Source File: __init__.py From sklearn2pmml with GNU Affero General Public License v3.0 | 5 votes |
def test_make_pmml_pipeline(self): estimator = DummyRegressor() pmml_pipeline = make_pmml_pipeline(estimator) self.assertTrue(isinstance(pmml_pipeline, PMMLPipeline)) pipeline = Pipeline([ ("estimator", estimator) ]) pmml_pipeline = make_pmml_pipeline(pipeline) self.assertTrue(isinstance(pmml_pipeline, PMMLPipeline))
Example #23
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(NotFittedError, reg.predict, [])
Example #24
Source File: test_dummy.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.dummy.DummyClassifier, dummy.DummyClassifier) self.assertIs(df.dummy.DummyRegressor, dummy.DummyRegressor)
Example #25
Source File: test_pipeline.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_set_params_nested_pipeline(): estimator = Pipeline([ ('a', Pipeline([ ('b', DummyRegressor()) ])) ]) estimator.set_params(a__b__alpha=0.001, a__b=Lasso()) estimator.set_params(a__steps=[('b', LogisticRegression())], a__b__C=5)
Example #26
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X))
Example #27
Source File: test_dummy.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X))
Example #28
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, [])
Example #29
Source File: test_dummy.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
Example #30
Source File: test_pipeline.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_set_params_nested_pipeline(): estimator = Pipeline([ ('a', Pipeline([ ('b', DummyRegressor()) ])) ]) estimator.set_params(a__b__alpha=0.001, a__b=Lasso()) estimator.set_params(a__steps=[('b', LogisticRegression())], a__b__C=5)