Python attention.Attention() Examples
The following are 7
code examples of attention.Attention().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
attention
, or try the search function
.
Example #1
Source File: token_predictor.py From atis with MIT License | 7 votes |
def __init__(self, model, params, vocabulary, attention_key_size): self.vocabulary = vocabulary self.attention_module = Attention(model, params.decoder_state_size, attention_key_size, attention_key_size) self.state_transform_weights = du.add_params( model, (params.decoder_state_size + attention_key_size, params.decoder_state_size), "weights-state-transform") self.vocabulary_weights = du.add_params( model, (params.decoder_state_size, len(vocabulary)), "weights-vocabulary") self.vocabulary_biases = du.add_params(model, tuple([len(vocabulary)]), "biases-vocabulary")
Example #2
Source File: attention_decoder.py From Neural-Machine-Translation with MIT License | 6 votes |
def __init__(self, attention_model, hidden_size, output_size, n_layers=1, dropout_p=.1): super(AttentionDecoderRNN, self).__init__() self.attention_model = attention_model self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.dropout_p = dropout_p # Define layers self.embedding = nn.Embedding(output_size, hidden_size) self.gru = nn.GRU(hidden_size * 2, hidden_size, n_layers, dropout=dropout_p) self.out = nn.Linear(hidden_size * 2, output_size) # Choose attention model if attention_model is not None: self.attention = Attention(attention_model, hidden_size)
Example #3
Source File: deephlapan_main.py From deephlapan with GNU General Public License v2.0 | 5 votes |
def run_model(i,X_test): score = np.zeros((5, len(X_test))) with CustomObjectScope({'Attention': Attention}): model=load_model(curDir+ 'model/binding_model' + str(i+1)+ '.hdf5') score[i,:] =np.squeeze(model.predict_proba(X_test)) return score[i,:]
Example #4
Source File: deephlapan_main.py From deephlapan with GNU General Public License v2.0 | 5 votes |
def run_model1(i,X_test): score1 = np.zeros((5, len(X_test))) with CustomObjectScope({'Attention': Attention}): model1=load_model(curDir+ 'model/immunogenicity_model' + str(i+1)+ '.hdf5') score1[i,:]=np.squeeze(model1.predict_proba(X_test)) return score1[i,:]
Example #5
Source File: net.py From Conditional-Batch-Norm with MIT License | 5 votes |
def __init__(self, config, no_words, no_answers, resnet_model, lstm_size, emb_size, use_pretrained=True): super(Net, self).__init__() self.use_pretrained = use_pretrained # whether to use pretrained ResNet self.word_cnt = no_words # total count of words self.ans_cnt = no_answers # total count of valid answers self.lstm_size = lstm_size # lstm emb size to be passed to CBN layer self.emb_size = emb_size # hidden layer size of MLP used to predict delta beta and gamma parameters self.config = config # config file containing the values of parameters self.embedding = nn.Embedding(self.word_cnt, self.emb_size) self.lstm = VariableLengthLSTM(self.config['model']).cuda() self.net = create_resnet(resnet_model, self.lstm_size, self.emb_size, self.use_pretrained) self.attention = Attention(self.config).cuda() self.que_mlp = nn.Sequential( nn.Linear(config['model']['no_hidden_LSTM'], config['model']['no_question_mlp']), nn.Tanh(), ) self.img_mlp = nn.Sequential( nn.Linear(2048, config['model']['no_image_mlp']), nn.Tanh(), ) self.dropout = nn.Dropout(config['model']['dropout_keep_prob']) self.final_mlp = nn.Linear(config['model']['no_hidden_final_mlp'], self.ans_cnt) self.softmax = nn.Softmax() self.loss = nn.CrossEntropyLoss()
Example #6
Source File: net.py From Conditional-Batch-Norm with MIT License | 5 votes |
def forward(self, image, tokens, glove_emb, labels=None): ####### Question Embedding ####### # get the lstm representation of the final state at time t que_emb = self.embedding(tokens) emb = torch.cat([que_emb, glove_emb], dim=2) lstm_emb, internal_state = self.lstm(emb) lstm_emb = lstm_emb[:,-1,:] ####### Image features using CBN ResNet with Attention ######## feature = self.net(image, lstm_emb) # l2 normalisation sq_sum = torch.sqrt(torch.sum(feature**2, dim=1)+EPS) sq_sum = torch.stack([sq_sum]*feature.data.shape[1], dim=1) feature = feature / sq_sum attn_feature = self.attention(feature, lstm_emb) ####### MLP for question and image embedding ######## lstm_emb = lstm_emb.view(feature.data.shape[0], -1) que_embedding = self.que_mlp(lstm_emb) image_embedding = self.img_mlp(attn_feature) ####### MLP for fused question and image embedding ######## full_embedding = que_embedding * image_embedding full_embedding = self.dropout(full_embedding) out = self.final_mlp(full_embedding) prob = self.softmax(out) val, ind = torch.max(prob, dim=1) # hard cross entropy loss if labels is not None: loss = self.loss(prob, labels) return loss, ind else: return ind
Example #7
Source File: base_model.py From bottom-up-attention-vqa with GNU General Public License v3.0 | 5 votes |
def build_baseline0(dataset, num_hid): w_emb = WordEmbedding(dataset.dictionary.ntoken, 300, 0.0) q_emb = QuestionEmbedding(300, num_hid, 1, False, 0.0) v_att = Attention(dataset.v_dim, q_emb.num_hid, num_hid) q_net = FCNet([num_hid, num_hid]) v_net = FCNet([dataset.v_dim, num_hid]) classifier = SimpleClassifier( num_hid, 2 * num_hid, dataset.num_ans_candidates, 0.5) return BaseModel(w_emb, q_emb, v_att, q_net, v_net, classifier)