Python pickle.__name__() Examples
The following are 11
code examples of pickle.__name__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pickle
, or try the search function
.
Example #1
Source File: test_pytorch_model_export.py From mlflow with Apache License 2.0 | 6 votes |
def test_load_pyfunc_loads_torch_model_using_pickle_module_specified_at_save_time( module_scoped_subclassed_model, model_path): custom_pickle_module = pickle mlflow.pytorch.save_model( path=model_path, pytorch_model=module_scoped_subclassed_model, conda_env=None, pickle_module=custom_pickle_module) import_module_fn = importlib.import_module imported_modules = [] def track_module_imports(module_name): imported_modules.append(module_name) return import_module_fn(module_name) with mock.patch("importlib.import_module") as import_mock,\ mock.patch("torch.load") as torch_load_mock: import_mock.side_effect = track_module_imports pyfunc.load_pyfunc(model_path) torch_load_mock.assert_called_with(mock.ANY, pickle_module=custom_pickle_module) assert custom_pickle_module.__name__ in imported_modules
Example #2
Source File: curvedb.py From pyrpl with GNU General Public License v3.0 | 6 votes |
def get(cls, curve): if isinstance(curve, CurveDB): return curve elif isinstance(curve, list): return [CurveDB.get(c) for c in curve] else: with open(os.path.join(CurveDB._dirname, str(curve) + cls.file_extension), 'rb' if file_backend.__name__ == 'pickle' else 'r')\ as f: # rb is for compatibility with python 3 # see http://stackoverflow.com/questions/5512811/builtins-typeerror-must-be-str-not-bytes curve = CurveDB() curve._pk, curve.params, data = file_backend.load(f) curve.data = tuple([np.asarray(a) for a in data]) if isinstance(curve.data, pd.Series): # for backwards compatibility x, y = curve.data.index.values, curve.data.values curve.data = (x, y) return curve
Example #3
Source File: test_cPickle.py From ironpython2 with Apache License 2.0 | 5 votes |
def __repr__(self): if hasattr(self, '__getstate__'): state = repr(self.__getstate__()) else: state = sorted_dict_repr(self.__dict__) return "<%s instance with state %s>" % ( type(self).__name__, normalized_repr(state))
Example #4
Source File: test_cPickle.py From ironpython2 with Apache License 2.0 | 5 votes |
def test_load_negative(self): if cPickle.__name__ == "cPickle": # pickle vs. cPickle report different exceptions, even on Cpy filename = os.tempnam() for temp in ['\x02', "No"]: self.write_to_file(filename, content=temp) f = open(filename) self.assertRaises(cPickle.UnpicklingError, cPickle.load, f) f.close()
Example #5
Source File: test_cPickle.py From ironpython3 with Apache License 2.0 | 5 votes |
def __repr__(self): if hasattr(self, '__getstate__'): state = repr(self.__getstate__()) else: state = sorted_dict_repr(self.__dict__) return "<%s instance with state %s>" % ( type(self).__name__, normalized_repr(state))
Example #6
Source File: test_cPickle.py From ironpython3 with Apache License 2.0 | 5 votes |
def test_load_negative(self): if cPickle.__name__ == "_pickle": # pickle vs. cPickle report different exceptions, even on Cpy filename = os.tempnam() for temp in ['\x02', "No"]: self.write_to_file(filename, content=temp) f = open(filename) self.assertRaises(cPickle.UnpicklingError, cPickle.load, f) f.close()
Example #7
Source File: test_pytorch_model_export.py From mlflow with Apache License 2.0 | 5 votes |
def test_load_model_loads_torch_model_using_pickle_module_specified_at_save_time( module_scoped_subclassed_model): custom_pickle_module = pickle artifact_path = "pytorch_model" with mlflow.start_run(): mlflow.pytorch.log_model( artifact_path=artifact_path, pytorch_model=module_scoped_subclassed_model, conda_env=None, pickle_module=custom_pickle_module) model_uri = "runs:/{run_id}/{artifact_path}".format( run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path) import_module_fn = importlib.import_module imported_modules = [] def track_module_imports(module_name): imported_modules.append(module_name) return import_module_fn(module_name) with mock.patch("importlib.import_module") as import_mock,\ mock.patch("torch.load") as torch_load_mock: import_mock.side_effect = track_module_imports pyfunc.load_pyfunc(model_uri=model_uri) torch_load_mock.assert_called_with(mock.ANY, pickle_module=custom_pickle_module) assert custom_pickle_module.__name__ in imported_modules
Example #8
Source File: test_pytorch_model_export.py From mlflow with Apache License 2.0 | 5 votes |
def test_load_model_allows_user_to_override_pickle_module_via_keyword_argument( module_scoped_subclassed_model, model_path): mlflow.pytorch.save_model( path=model_path, pytorch_model=module_scoped_subclassed_model, conda_env=None, pickle_module=pickle) mlflow_torch_pickle_load = mlflow_pytorch_pickle_module.load pickle_call_results = { "mlflow_torch_pickle_load_called": False, } def validate_mlflow_torch_pickle_load_called(*args, **kwargs): pickle_call_results["mlflow_torch_pickle_load_called"] = True return mlflow_torch_pickle_load(*args, **kwargs) log_messages = [] def custom_warn(message_text, *args, **kwargs): log_messages.append(message_text % args % kwargs) with mock.patch("mlflow.pytorch.pickle_module.load") as mlflow_torch_pickle_load_mock,\ mock.patch("mlflow.pytorch._logger.warning") as warn_mock: mlflow_torch_pickle_load_mock.side_effect = validate_mlflow_torch_pickle_load_called warn_mock.side_effect = custom_warn mlflow.pytorch.load_model(model_uri=model_path, pickle_module=mlflow_pytorch_pickle_module) assert all(pickle_call_results.values()) assert any([ "does not match the pickle module that was used to save the model" in log_message and pickle.__name__ in log_message and mlflow_pytorch_pickle_module.__name__ in log_message for log_message in log_messages ])
Example #9
Source File: curvedb.py From pyrpl with GNU General Public License v3.0 | 5 votes |
def __init__(self, name="some_curve"): """ A CurveDB object has - name = string to give the curve a name - pk = integer to uniquely identify the curve (the database primary key) - data = pandas.Series() object to hold any data - params = dict() with all kinds of parameters """ self.logger = logging.getLogger(name=__name__) self.params = dict() x, y = np.array([], dtype=np.float), np.array([], dtype=np.float) self.data = (x, y) self.name = name
Example #10
Source File: curvedb.py From pyrpl with GNU General Public License v3.0 | 5 votes |
def save(self): with open(os.path.join(self._dirname, str(self.pk) + self.file_extension), 'wb' if file_backend.__name__ == 'pickle' else 'w')\ as f: # wb is for compatibility with python 3 # see http://stackoverflow.com/questions/5512811/builtins-typeerror-must-be-str-not-bytes data = [a.tolist() for a in self.data] file_backend.dump([self.pk, self.params, data], f, )
Example #11
Source File: messenger.py From avocado-vt with GNU General Public License v2.0 | 4 votes |
def read_msg(self, timeout=None): """ Read data from com interface. :param timeout: timeout for reading data. :type timeout: float :return: (True, data) when reading is successful. (False, None) when other side is closed. (None, None) when reading is timeouted. """ data = self._read_until_len(timeout) if data is None: return (None, None) if len(data) == 0: return (False, None) rdata = None try: cmd_len = int(data) rdata = "" rdata_len = 0 while (rdata_len < cmd_len): rdata += self.stdin.read(cmd_len - rdata_len) rdata_len = len(rdata) rdataIO = StringIO(self.stdin.decode(rdata)) unp = cPickle.Unpickler(rdataIO) if cPickle.__name__ == 'pickle': unp.find_class = _map_path else: unp.find_global = _map_path data = unp.load() except Exception as e: logging.error("ERROR data:%s rdata:%s" % (data, rdata)) try: self.write_msg(remote_interface.MessengerError("Communication " "failed.%s" % (e))) except OSError: pass self.flush_stdin() raise # Debugging commands. # if (isinstance(data, remote_interface.BaseCmd)): # print data.func return (True, data)