Python detectron.datasets.dummy_datasets.get_coco_dataset() Examples
The following are 13
code examples of detectron.datasets.dummy_datasets.get_coco_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
detectron.datasets.dummy_datasets
, or try the search function
.
Example #1
Source File: model.py From nuke-ML-server with Apache License 2.0 | 5 votes |
def __init__(self): super(Model, self).__init__() self.name = 'Mask RCNN' # Configuration and weights options # By default, we use ResNet50 backbone architecture, you can switch to # ResNet101 to increase quality if your GPU memory is higher than 8GB. # To do so, you will need to download both .yaml and .pkl ResNet101 files # then replace the below 'cfg_file' with the following: # self.cfg_file = 'models/mrcnn/e2e_mask_rcnn_X-101-64x4d-FPN_2x.yaml' self.cfg_file = 'models/mrcnn/e2e_mask_rcnn_R-50-FPN_2x.yaml' self.weights = 'models/mrcnn/model_final.pkl' self.default_cfg = copy.deepcopy(AttrDict(cfg)) # cfg from detectron.core.config self.mrcnn_cfg = AttrDict() self.dummy_coco_dataset = dummy_datasets.get_coco_dataset() # Inference options self.show_box = True self.show_class = True self.thresh = 0.7 self.alpha = 0.4 self.show_border = True self.border_thick = 1 self.bbox_thick = 1 self.font_scale = 0.35 self.binary_masks = False # Define exposed options self.options = ( 'show_box', 'show_class', 'thresh', 'alpha', 'show_border', 'border_thick', 'bbox_thick', 'font_scale', 'binary_masks', ) # Define inputs/outputs self.inputs = {'input': 3} self.outputs = {'output': 3}
Example #2
Source File: infer_simple.py From KL-Loss with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=args.thresh, kp_thresh=args.kp_thresh, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #3
Source File: infer.py From KL-Loss with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(envu.yaml_dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )
Example #4
Source File: infer_simple.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #5
Source File: infer.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(yaml.dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )
Example #6
Source File: infer_simple.py From Detectron-Cascade-RCNN with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #7
Source File: infer.py From Detectron-Cascade-RCNN with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(yaml.dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )
Example #8
Source File: infer_simple.py From Detectron with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=args.thresh, kp_thresh=args.kp_thresh, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #9
Source File: infer.py From Detectron with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(envu.yaml_dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )
Example #10
Source File: infer_simple.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=args.thresh, kp_thresh=args.kp_thresh, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #11
Source File: infer.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(envu.yaml_dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )
Example #12
Source File: infer_simple.py From CBNet with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2, ext=args.output_ext, out_when_no_box=args.out_when_no_box )
Example #13
Source File: infer.py From CBNet with Apache License 2.0 | 4 votes |
def main(args): logger = logging.getLogger(__name__) dummy_coco_dataset = dummy_datasets.get_coco_dataset() cfg_orig = load_cfg(yaml.dump(cfg)) im = cv2.imread(args.im_file) if args.rpn_pkl is not None: proposal_boxes, _proposal_scores = get_rpn_box_proposals(im, args) workspace.ResetWorkspace() else: proposal_boxes = None cls_boxes, cls_segms, cls_keyps = None, None, None for i in range(0, len(args.models_to_run), 2): pkl = args.models_to_run[i] yml = args.models_to_run[i + 1] cfg.immutable(False) merge_cfg_from_cfg(cfg_orig) merge_cfg_from_file(yml) if len(pkl) > 0: weights_file = pkl else: weights_file = cfg.TEST.WEIGHTS cfg.NUM_GPUS = 1 assert_and_infer_cfg(cache_urls=False) model = model_engine.initialize_model_from_cfg(weights_file) with c2_utils.NamedCudaScope(0): cls_boxes_, cls_segms_, cls_keyps_ = \ model_engine.im_detect_all(model, im, proposal_boxes) cls_boxes = cls_boxes_ if cls_boxes_ is not None else cls_boxes cls_segms = cls_segms_ if cls_segms_ is not None else cls_segms cls_keyps = cls_keyps_ if cls_keyps_ is not None else cls_keyps workspace.ResetWorkspace() out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(args.im_file) + '.pdf') ) logger.info('Processing {} -> {}'.format(args.im_file, out_name)) vis_utils.vis_one_image( im[:, :, ::-1], args.im_file, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 )