Python tensorpack.models.regularize_cost() Examples
The following are 11
code examples of tensorpack.models.regularize_cost().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorpack.models
, or try the search function
.
Example #1
Source File: imagenet_utils.py From ghostnet with Apache License 2.0 | 6 votes |
def build_graph(self, image, label): image = ImageNetModel.image_preprocess(image, bgr=self.image_bgr) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) print('self.label_smoothing', self.label_smoothing) loss = ImageNetModel.compute_loss_and_error(logits, label, self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, tf.contrib.layers.l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #2
Source File: imagenet_utils.py From benchmarks with The Unlicense | 6 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format == 'NCHW' image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, tf.contrib.layers.l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #3
Source File: imagenet_utils.py From webvision-2.0-benchmarks with Apache License 2.0 | 6 votes |
def _build_graph(self, inputs): image, label = inputs image = ImageNetModel.image_preprocess(image, bgr=True) if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) loss = ImageNetModel.compute_loss_and_error(logits, label) if self.weight_decay > 0: wd_loss = regularize_cost('.*/W', tf.contrib.layers.l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) self.cost = tf.add_n([loss, wd_loss], name='cost') else: self.cost = tf.identity(loss, name='cost') add_moving_summary(self.cost)
Example #4
Source File: imagenet_utils.py From GroupNorm-reproduce with Apache License 2.0 | 6 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, tf.contrib.layers.l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #5
Source File: utils_tp.py From imgclsmob with MIT License | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) if is_channels_first(self.data_format): image = tf.transpose(image, [0, 3, 1, 2], name="image_transpose") # tf.summary.image('input_image_', image) # tf.summary.tensor_summary('input_tensor_', image) # with tf.name_scope('tmp1_summaries'): # add_tensor_summary(image, ['histogram', 'rms', 'sparsity'], name='tmp1_tensor') is_training = get_current_tower_context().is_training logits = self.model_lambda( x=image, training=is_training) loss = ImageNetModel.compute_loss_and_error( logits=logits, label=label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost( regex=self.weight_decay_pattern, func=tf.contrib.layers.l2_regularizer(self.weight_decay), name="l2_regularize_loss") add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name="cost") else: total_cost = tf.identity(loss, name="cost") add_moving_summary(total_cost) if self.loss_scale != 1.0: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #6
Source File: imagenet_utils.py From LQ-Nets with MIT License | 5 votes |
def _build_graph(self, inputs): image, label = inputs image = ImageNetModel.image_preprocess(image, bgr=self.image_bgr) if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) loss = ImageNetModel.compute_loss_and_error(logits, label) wd_loss = regularize_cost(self.weight_decay_pattern, tf.contrib.layers.l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) self.cost = tf.add_n([loss, wd_loss], name='cost')
Example #7
Source File: imagenet_utils.py From tensorpack with Apache License 2.0 | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) tf.nn.softmax(logits, name='prob') loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #8
Source File: imagenet_utils.py From tensorpack with Apache License 2.0 | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) tf.nn.softmax(logits, name='prob') loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #9
Source File: imagenet_utils.py From tensorpack with Apache License 2.0 | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) tf.nn.softmax(logits, name='prob') loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #10
Source File: imagenet_utils.py From tensorpack with Apache License 2.0 | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) tf.nn.softmax(logits, name='prob') loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost
Example #11
Source File: imagenet_utils.py From tensorpack with Apache License 2.0 | 5 votes |
def build_graph(self, image, label): image = self.image_preprocess(image) assert self.data_format in ['NCHW', 'NHWC'] if self.data_format == 'NCHW': image = tf.transpose(image, [0, 3, 1, 2]) logits = self.get_logits(image) tf.nn.softmax(logits, name='prob') loss = ImageNetModel.compute_loss_and_error( logits, label, label_smoothing=self.label_smoothing) if self.weight_decay > 0: wd_loss = regularize_cost(self.weight_decay_pattern, l2_regularizer(self.weight_decay), name='l2_regularize_loss') add_moving_summary(loss, wd_loss) total_cost = tf.add_n([loss, wd_loss], name='cost') else: total_cost = tf.identity(loss, name='cost') add_moving_summary(total_cost) if self.loss_scale != 1.: logger.info("Scaling the total loss by {} ...".format(self.loss_scale)) return total_cost * self.loss_scale else: return total_cost