Python mmdet.models.RPN Examples
The following are 21
code examples of mmdet.models.RPN().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmdet.models
, or try the search function
.
Example #1
Source File: train.py From AugFPN with Apache License 2.0 | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) else: if cfg.data.val.type == 'CocoDataset': runner.register_hook(CocoDistEvalmAPHook(cfg.data.val)) else: runner.register_hook(DistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #2
Source File: train.py From mmdetection_with_SENet154 with Apache License 2.0 | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg)) else: runner.register_hook(DistEvalmAPHook(val_dataset_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #3
Source File: train.py From hrnet with MIT License | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) else: if cfg.data.val.type == 'CocoDataset': runner.register_hook(CocoDistEvalmAPHook(cfg.data.val)) else: runner.register_hook(DistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #4
Source File: train.py From Grid-R-CNN with Apache License 2.0 | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg)) else: runner.register_hook(DistEvalmAPHook(val_dataset_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #5
Source File: train.py From kaggle-imaterialist with MIT License | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg)) else: runner.register_hook(DistEvalmAPHook(val_dataset_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #6
Source File: train.py From Reasoning-RCNN with Apache License 2.0 | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) else: if cfg.data.val.type == 'CocoDataset': runner.register_hook(CocoDistEvalmAPHook(cfg.data.val)) else: runner.register_hook(DistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #7
Source File: train.py From AerialDetection with Apache License 2.0 | 5 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(val_dataset_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook(CocoDistEvalmAPHook(val_dataset_cfg)) else: runner.register_hook(DistEvalmAPHook(val_dataset_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #8
Source File: fna_search_apis.py From FNA with Apache License 2.0 | 5 votes |
def _dist_train(model, datasets, cfg, validate=False, logger=None): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for dataset in datasets ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner runner = NASRunner(model, batch_processor, None, cfg.work_dir, cfg.log_level, cfg=cfg, logger=logger) # register hooks weight_optim_config = DistOptimizerHook(**cfg.optimizer.weight_optim.optimizer_config) arch_optim_config = ArchDistOptimizerHook(**cfg.optimizer.arch_optim.optimizer_config) runner.register_training_hooks(cfg.lr_config, weight_optim_config, arch_optim_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) else: if cfg.dataset_type == 'CocoDataset': # runner.register_hook(CocoDistEvalmAPHook_(datasets[1])) runner.register_hook(CocoDistEvalmAPHook(cfg.data.val_)) else: runner.register_hook(DistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs, cfg.arch_update_epoch)
Example #9
Source File: train.py From Libra_R-CNN with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #10
Source File: train.py From ttfnet with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #11
Source File: train.py From CenterNet with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #12
Source File: train.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #13
Source File: train.py From Cascade-RPN with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, (RPN, CascadeRPN)): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #14
Source File: train.py From FNA with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # with torch.no_grad(): # for j in range(2): # print(j) # for i, data_batch in enumerate(data_loaders[0]): # _ = model(**data_batch) # # break # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook(**cfg.optimizer_config) runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) else: if cfg.data.val.type == 'CocoDataset': runner.register_hook(CocoDistEvalmAPHook(cfg.data.val)) else: runner.register_hook(DistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #15
Source File: train.py From FoveaBox with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #16
Source File: train.py From IoU-Uniform-R-CNN with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #17
Source File: train.py From RDSNet with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #18
Source File: train.py From kaggle-kuzushiji-recognition with MIT License | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalF1Hook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #19
Source File: train.py From PolarMask with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) for ds in dataset ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = DATASETS.get(val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #20
Source File: train.py From mmdetection-annotated with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
Example #21
Source File: train.py From GCNet with Apache License 2.0 | 4 votes |
def _dist_train(model, dataset, cfg, validate=False): # prepare data loaders data_loaders = [ build_dataloader( dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, dist=True) ] # put model on gpus model = MMDistributedDataParallel(model.cuda()) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = Runner(model, batch_processor, optimizer, cfg.work_dir, cfg.log_level) # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config, **fp16_cfg) else: optimizer_config = DistOptimizerHook(**cfg.optimizer_config) # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) runner.register_hook(DistSamplerSeedHook()) # register eval hooks if validate: val_dataset_cfg = cfg.data.val eval_cfg = cfg.get('evaluation', {}) if isinstance(model.module, RPN): # TODO: implement recall hooks for other datasets runner.register_hook( CocoDistEvalRecallHook(val_dataset_cfg, **eval_cfg)) else: dataset_type = getattr(datasets, val_dataset_cfg.type) if issubclass(dataset_type, datasets.CocoDataset): runner.register_hook( CocoDistEvalmAPHook(val_dataset_cfg, **eval_cfg)) else: runner.register_hook( DistEvalmAPHook(val_dataset_cfg, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)