Python seaborn.hls_palette() Examples
The following are 6
code examples of seaborn.hls_palette().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: test_plot.py From scedar with MIT License | 6 votes |
def test_labs_to_cmap(): sids = [0, 1, 2, 3, 4, 5, 6, 7] labs = list(map(str, [3, 0, 1, 0, 0, 1, 2, 2])) slab_csamples = eda.SingleLabelClassifiedSamples( np.random.ranf(80).reshape(8, -1), labs, sids) (lab_cmap, lab_norm, lab_ind_arr, lab_col_lut, uniq_lab_lut) = eda.plot.labs_to_cmap(slab_csamples.labs, return_lut=True) n_uniq_labs = len(set(labs)) assert lab_cmap.N == n_uniq_labs assert lab_cmap.colors == sns.hls_palette(n_uniq_labs) np.testing.assert_equal( lab_ind_arr, np.array([3, 0, 1, 0, 0, 1, 2, 2])) assert labs == [uniq_lab_lut[x] for x in lab_ind_arr] assert len(uniq_lab_lut) == n_uniq_labs assert len(lab_col_lut) == n_uniq_labs assert [lab_col_lut[uniq_lab_lut[i]] for i in range(n_uniq_labs)] == sns.hls_palette(n_uniq_labs) lab_cmap2, lab_norm2 = eda.plot.labs_to_cmap( slab_csamples.labs, return_lut=False) assert lab_cmap2.N == n_uniq_labs assert lab_cmap2.colors == lab_cmap.colors np.testing.assert_equal(lab_norm2.boundaries, lab_norm.boundaries)
Example #2
Source File: aggregate_label.py From deeposlandia with MIT License | 5 votes |
def set_label_color(nb_colors): """Set a color for each aggregated label with seaborn palettes Parameters ---------- nb_colors : int Number of label to display """ palette = sns.hls_palette(nb_colors, 0.01, 0.6, 0.75) return ([int(255 * item) for item in color] for color in palette)
Example #3
Source File: visualization.py From default-credit-card-prediction with MIT License | 5 votes |
def visualize_hist_pairplot(X,y,selected_feature1,selected_feature2,features,diag_kind): """ Visualize the pairwise relationships (Histograms and Density Funcions) between classes and respective attributes Keyword arguments: X -- The feature vectors y -- The target vector selected_feature1 - First feature selected_feature1 - Second feature diag_kind -- Type of plot in the diagonal (Histogram or Density Function) """ #create data joint_data=np.column_stack((X,y)) column_names=features #create dataframe df=pd.DataFrame(data=joint_data,columns=column_names) #plot palette = sea.hls_palette() splot=sea.pairplot(df, hue="Y", palette={0:palette[2],1:palette[0]},vars=[selected_feature1,selected_feature2],diag_kind=diag_kind) splot.fig.suptitle('Pairwise relationship: '+selected_feature1+" vs "+selected_feature2) splot.set(xticklabels=[]) # plt.subplots_adjust(right=0.94, top=0.94) #save fig output_dir = "img" save_fig(output_dir,'{}/{}_{}_hist_pairplot.png'.format(output_dir,selected_feature1,selected_feature2)) # plt.show()
Example #4
Source File: visualization.py From default-credit-card-prediction with MIT License | 5 votes |
def visualize_feature_boxplot(X,y,selected_feature,features): """ Visualize the boxplot of a feature Keyword arguments: X -- The feature vectors y -- The target vector selected_feature -- The desired feature to obtain the histogram features -- Vector of feature names (X1 to XN) """ #create data joint_data=np.column_stack((X,y)) column_names=features #create dataframe df=pd.DataFrame(data=joint_data,columns=column_names) # palette = sea.hls_palette() splot=sea.boxplot(data=df,x='Y',y=selected_feature,hue="Y",palette="husl") plt.title('BoxPlot Distribution of '+selected_feature) #save fig output_dir = "img" save_fig(output_dir,'{}/{}_boxplot.png'.format(output_dir,selected_feature)) # plt.show()
Example #5
Source File: plot.py From scedar with MIT License | 5 votes |
def labs_to_cmap(labels, return_lut=False, shuffle_colors=False, random_state=None): np.random.seed(random_state) # Each label has its own index and color mtype.check_is_valid_labs(labels) labels = np.array(labels) uniq_lab_arr = np.unique(labels) num_uniq_labs = len(uniq_lab_arr) uniq_lab_inds = list(range(num_uniq_labs)) lab_col_list = list(sns.hls_palette(num_uniq_labs)) if shuffle_colors: np.random.shuffle(lab_col_list) lab_cmap = mpl.colors.ListedColormap(lab_col_list) # Need to keep track the order of unique labels, so that a labeled # legend can be generated. # Map unique label indices to unique labels uniq_lab_lut = dict(zip(range(num_uniq_labs), uniq_lab_arr)) # Map unique labels to indices uniq_ind_lut = dict(zip(uniq_lab_arr, range(num_uniq_labs))) # a list of label indices lab_ind_arr = np.array([uniq_ind_lut[x] for x in labels]) # map unique labels to colors # Used to generate legends lab_col_lut = dict(zip([uniq_lab_lut[i] for i in range(len(uniq_lab_arr))], lab_col_list)) # norm separates cmap to difference indices # https://matplotlib.org/tutorials/colors/colorbar_only.html lab_norm = mpl.colors.BoundaryNorm(uniq_lab_inds + [lab_cmap.N], lab_cmap.N) if return_lut: return lab_cmap, lab_norm, lab_ind_arr, lab_col_lut, uniq_lab_lut else: return lab_cmap, lab_norm
Example #6
Source File: visAnnos.py From scMatch with MIT License | 4 votes |
def DrawScatters(savefolder, annoFile, visMethod, cords, annos): import plotly import plotly.graph_objs as go annText = os.path.basename(annoFile).split('.')[0] for kind in ['cell type', 'top sample']: if kind not in annos.columns: continue annotationList = sorted(list(set(annos.ix[:,kind]))) import seaborn as sns colorList = sns.hls_palette(n_colors=len(annotationList)) data = [] annoLen = 0 for annoIdx in range(len(annotationList)): annoNames = annotationList[annoIdx] if len(annoNames) > annoLen: annoLen = len(annoNames) indicesOfAnno = annos[kind]==annoNames text = [] for idx in annos.index[indicesOfAnno]: show_text = '%s: %s, barcode: %s' % (kind, annoNames, idx) text.append(show_text) trace = go.Scatter( x = cords.ix[annos.index[indicesOfAnno],'x'], y = cords.ix[annos.index[indicesOfAnno],'y'], name = annoNames, mode = 'markers', marker=dict( color='rgb(%s, %s, %s)' % colorList[annoIdx], size=5, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ), text = text, ) data.append(trace) if annoLen < 35: layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=True) else: layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=False) fig = go.Figure(data=data, layout=layout) fn = os.path.join(savefolder, '%s_%s_%s.html' % (annText, kind.replace(' ', '_'), visMethod)) print('##########saving plot: %s' % fn) plotly.offline.plot(fig, filename=fn) #start to visualise test dataset