Python nn.BilinearInterpolation2d() Examples

The following are 16 code examples of nn.BilinearInterpolation2d(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module nn , or try the search function .
Example #1
Source File: keypoint_rcnn_heads.py    From Detectron.pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #2
Source File: mask_rcnn_heads.py    From Detectron.pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #3
Source File: keypoint_rcnn_heads.py    From FPN-Pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #4
Source File: mask_rcnn_heads.py    From FPN-Pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #5
Source File: keypoint_rcnn_heads.py    From Detectron.pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #6
Source File: mask_rcnn_heads.py    From Detectron.pytorch with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #7
Source File: keypoint_rcnn_heads.py    From Context-aware-ZSR with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #8
Source File: mask_rcnn_heads.py    From Context-aware-ZSR with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #9
Source File: keypoint_rcnn_heads.py    From PANet with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #10
Source File: mask_rcnn_heads.py    From PANet with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #11
Source File: keypoint_rcnn_heads.py    From PMFNet with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #12
Source File: mask_rcnn_heads.py    From PMFNet with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #13
Source File: keypoint_rcnn_heads.py    From detectron-self-train with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #14
Source File: mask_rcnn_heads.py    From detectron-self-train with MIT License 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights() 
Example #15
Source File: keypoint_rcnn_heads.py    From DIoU-pytorch-detectron with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1)

        if cfg.KRCNN.USE_DECONV:
            # Apply ConvTranspose to the feature representation; results in 2x # upsampling
            self.deconv = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.DECONV_DIM, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2) - 1)
            dim_in = cfg.KRCNN.DECONV_DIM

        if cfg.KRCNN.USE_DECONV_OUTPUT:
            # Use ConvTranspose to predict heatmaps; results in 2x upsampling
            self.classify = nn.ConvTranspose2d(
                dim_in, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.DECONV_KERNEL,
                2, padding=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1))
        else:
            # Use Conv to predict heatmaps; does no upsampling
            self.classify = nn.Conv2d(dim_in, cfg.KRCNN.NUM_KEYPOINTS, 1, 1, padding=0)

        if self.upsample_heatmap:
            # self.upsample = nn.UpsamplingBilinear2d(scale_factor=cfg.KRCNN.UP_SCALE)
            self.upsample = mynn.BilinearInterpolation2d(
                cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE)

        self._init_weights() 
Example #16
Source File: mask_rcnn_heads.py    From DIoU-pytorch-detectron with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, dim_in):
        super().__init__()
        self.dim_in = dim_in

        n_classes = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1
        if cfg.MRCNN.USE_FC_OUTPUT:
            # Predict masks with a fully connected layer
            self.classify = nn.Linear(dim_in, n_classes * cfg.MRCNN.RESOLUTION**2)
        else:
            # Predict mask using Conv
            self.classify = nn.Conv2d(dim_in, n_classes, 1, 1, 0)
            if cfg.MRCNN.UPSAMPLE_RATIO > 1:
                self.upsample = mynn.BilinearInterpolation2d(
                    n_classes, n_classes, cfg.MRCNN.UPSAMPLE_RATIO)
        self._init_weights()