Python loader.Loader() Examples
The following are 3
code examples of loader.Loader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
loader
, or try the search function
.
Example #1
Source File: label.py From chexpert-labeler with MIT License | 6 votes |
def label(args): """Label the provided report(s).""" loader = Loader(args.reports_path, args.extract_impression) extractor = Extractor(args.mention_phrases_dir, args.unmention_phrases_dir, verbose=args.verbose) classifier = Classifier(args.pre_negation_uncertainty_path, args.negation_path, args.post_negation_uncertainty_path, verbose=args.verbose) aggregator = Aggregator(CATEGORIES, verbose=args.verbose) # Load reports in place. loader.load() # Extract observation mentions in place. extractor.extract(loader.collection) # Classify mentions in place. classifier.classify(loader.collection) # Aggregate mentions to obtain one set of labels for each report. labels = aggregator.aggregate(loader.collection) write(loader.reports, labels, args.output_path, args.verbose)
Example #2
Source File: sprite.py From visual-analogy-tensorflow with MIT License | 5 votes |
def __init__(self, sess, image_size=48, num_hid=512, model_type="dis+cls", batch_size=25, dataset="shape"): """Initialize the parameters for an Deep Visual Analogy network. Args: image_size: int, The size of width and height of input image model_type: string, The type of increment function ["add", "deep"] batch_size: int, The size of a batch [25] dataset: str, The name of dataset ["shape", ""] """ self.sess = sess self.image_size = image_size self.model_type = model_type self.batch_size = batch_size self.dataset = dataset self.num_hid = num_hid #self.loader = Loader(self.dataset, self.batch_size) self.cards = [2, 4, 3, 6, 2, 2, 2] num_categorical = 0 for card in self.cards: num_categorical = num_categorical + card self.cards[6] = 3; num_categorical = num_categorical + 1 self.num_categorical = num_categorical self.id_idxes = range(0, self.num_categorical - 1) self.pose_idxes = range(self.num_categorical, self.num_hid) # parameters used to save a checkpoint self._attrs = ['max_iter', 'batch_size', 'alpha', 'learning_rate'] self.build_model()
Example #3
Source File: shape.py From visual-analogy-tensorflow with MIT License | 5 votes |
def __init__(self, sess, image_size=48, model_type="deep", batch_size=25, dataset="shape"): """Initialize the parameters for an Deep Visual Analogy network. Args: image_size: int, The size of width and height of input image model_type: string, The type of increment function ["add", "deep"] batch_size: int, The size of a batch [25] dataset: str, The name of dataset ["shape", ""] """ self.sess = sess self.image_size = image_size self.model_type = model_type self.batch_size = batch_size self.dataset = dataset self.loader = Loader(self.dataset, self.batch_size) self.sample_dir = "samples" if not os.path.exists(self.sample_dir): os.makedirs(self.sample_dir) # parameters used to save a checkpoint self._attrs = ['batch_size', 'model_type', 'image_size'] self.options = ['rotate', 'scale', 'xpos', 'ypos'] self.build_model()