Python torchvision.transforms.transforms.CenterCrop() Examples
The following are 4
code examples of torchvision.transforms.transforms.CenterCrop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms.transforms
, or try the search function
.
Example #1
Source File: get_dataloader.py From Greedy_InfoMax with MIT License | 6 votes |
def get_transforms(eval=False, aug=None): trans = [] if aug["randcrop"] and not eval: trans.append(transforms.RandomCrop(aug["randcrop"])) if aug["randcrop"] and eval: trans.append(transforms.CenterCrop(aug["randcrop"])) if aug["flip"] and not eval: trans.append(transforms.RandomHorizontalFlip()) if aug["grayscale"]: trans.append(transforms.Grayscale()) trans.append(transforms.ToTensor()) trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"])) elif aug["mean"]: trans.append(transforms.ToTensor()) trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"])) else: trans.append(transforms.ToTensor()) trans = transforms.Compose(trans) return trans
Example #2
Source File: center_crop_video.py From torchvideo with Mozilla Public License 2.0 | 5 votes |
def __init__(self, size: Union[Tuple[int, int], int]): super().__init__() self._image_transform = tv.CenterCrop(size)
Example #3
Source File: CelebA.py From cortex with BSD 3-Clause "New" or "Revised" License | 4 votes |
def handle(self, source, copy_to_local=False, normalize=True, split=None, classification_mode=False, **transform_args): """ Args: source: copy_to_local: normalize: **transform_args: Returns: """ Dataset = self.make_indexing(CelebA) data_path = self.get_path(source) if copy_to_local: data_path = self.copy_to_local_path(data_path) if normalize and isinstance(normalize, bool): normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)] if classification_mode: train_transform = transforms.Compose([ transforms.RandomResizedCrop(64), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(*normalize), ]) test_transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize(*normalize), ]) else: train_transform = build_transforms(normalize=normalize, **transform_args) test_transform = train_transform if split is None: train_set = Dataset(root=data_path, transform=train_transform, download=True) test_set = Dataset(root=data_path, transform=test_transform) else: train_set, test_set = self.make_split( data_path, split, Dataset, train_transform, test_transform) input_names = ['images', 'labels', 'attributes'] dim_c, dim_x, dim_y = train_set[0][0].size() dim_l = len(train_set.classes) dim_a = train_set.attributes[0].shape[0] dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a) self.add_dataset('train', train_set) self.add_dataset('test', test_set) self.set_input_names(input_names) self.set_dims(**dims) self.set_scale((-1, 1))
Example #4
Source File: torchvision_datasets.py From cortex with BSD 3-Clause "New" or "Revised" License | 4 votes |
def _handle_STL(self, Dataset, data_path, transform=None, labeled_only=False, stl_center_crop=False, stl_resize_only=False, stl_no_resize=False): normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) if stl_no_resize: train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) else: if stl_center_crop: tr_trans = transforms.CenterCrop(64) te_trans = transforms.CenterCrop(64) elif stl_resize_only: tr_trans = transforms.Resize(64) te_trans = transforms.Resize(64) elif stl_no_resize: pass else: tr_trans = transforms.RandomResizedCrop(64) te_trans = transforms.Resize(64) train_transform = transforms.Compose([ tr_trans, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) test_transform = transforms.Compose([ te_trans, transforms.ToTensor(), normalize, ]) if labeled_only: split = 'train' else: split = 'train+unlabeled' train_set = Dataset( data_path, split=split, transform=train_transform, download=True) test_set = Dataset( data_path, split='test', transform=test_transform, download=True) return train_set, test_set