Python torchvision.transforms.transforms.RandomHorizontalFlip() Examples
The following are 5
code examples of torchvision.transforms.transforms.RandomHorizontalFlip().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms.transforms
, or try the search function
.
Example #1
Source File: vgg_mcdropout_cifar10.py From baal with Apache License 2.0 | 6 votes |
def get_datasets(initial_pool): transform = transforms.Compose( [transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(30), transforms.ToTensor(), transforms.Normalize(3 * [0.5], 3 * [0.5]), ]) test_transform = transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(3 * [0.5], 3 * [0.5]), ] ) # Note: We use the test set here as an example. You should make your own validation set. train_ds = datasets.CIFAR10('.', train=True, transform=transform, target_transform=None, download=True) test_set = datasets.CIFAR10('.', train=False, transform=test_transform, target_transform=None, download=True) active_set = ActiveLearningDataset(train_ds, pool_specifics={'transform': test_transform}) # We start labeling randomly. active_set.label_randomly(initial_pool) return active_set, test_set
Example #2
Source File: get_dataloader.py From Greedy_InfoMax with MIT License | 6 votes |
def get_transforms(eval=False, aug=None): trans = [] if aug["randcrop"] and not eval: trans.append(transforms.RandomCrop(aug["randcrop"])) if aug["randcrop"] and eval: trans.append(transforms.CenterCrop(aug["randcrop"])) if aug["flip"] and not eval: trans.append(transforms.RandomHorizontalFlip()) if aug["grayscale"]: trans.append(transforms.Grayscale()) trans.append(transforms.ToTensor()) trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"])) elif aug["mean"]: trans.append(transforms.ToTensor()) trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"])) else: trans.append(transforms.ToTensor()) trans = transforms.Compose(trans) return trans
Example #3
Source File: CelebA.py From cortex with BSD 3-Clause "New" or "Revised" License | 4 votes |
def handle(self, source, copy_to_local=False, normalize=True, split=None, classification_mode=False, **transform_args): """ Args: source: copy_to_local: normalize: **transform_args: Returns: """ Dataset = self.make_indexing(CelebA) data_path = self.get_path(source) if copy_to_local: data_path = self.copy_to_local_path(data_path) if normalize and isinstance(normalize, bool): normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)] if classification_mode: train_transform = transforms.Compose([ transforms.RandomResizedCrop(64), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(*normalize), ]) test_transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize(*normalize), ]) else: train_transform = build_transforms(normalize=normalize, **transform_args) test_transform = train_transform if split is None: train_set = Dataset(root=data_path, transform=train_transform, download=True) test_set = Dataset(root=data_path, transform=test_transform) else: train_set, test_set = self.make_split( data_path, split, Dataset, train_transform, test_transform) input_names = ['images', 'labels', 'attributes'] dim_c, dim_x, dim_y = train_set[0][0].size() dim_l = len(train_set.classes) dim_a = train_set.attributes[0].shape[0] dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a) self.add_dataset('train', train_set) self.add_dataset('test', test_set) self.set_input_names(input_names) self.set_dims(**dims) self.set_scale((-1, 1))
Example #4
Source File: torchvision_datasets.py From cortex with BSD 3-Clause "New" or "Revised" License | 4 votes |
def _handle_STL(self, Dataset, data_path, transform=None, labeled_only=False, stl_center_crop=False, stl_resize_only=False, stl_no_resize=False): normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) if stl_no_resize: train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) test_transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) else: if stl_center_crop: tr_trans = transforms.CenterCrop(64) te_trans = transforms.CenterCrop(64) elif stl_resize_only: tr_trans = transforms.Resize(64) te_trans = transforms.Resize(64) elif stl_no_resize: pass else: tr_trans = transforms.RandomResizedCrop(64) te_trans = transforms.Resize(64) train_transform = transforms.Compose([ tr_trans, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) test_transform = transforms.Compose([ te_trans, transforms.ToTensor(), normalize, ]) if labeled_only: split = 'train' else: split = 'train+unlabeled' train_set = Dataset( data_path, split=split, transform=train_transform, download=True) test_set = Dataset( data_path, split='test', transform=test_transform, download=True) return train_set, test_set
Example #5
Source File: MiniImagenet.py From MAML-Pytorch with MIT License | 4 votes |
def __init__(self, root, mode, batchsz, n_way, k_shot, k_query, resize, startidx=0): """ :param root: root path of mini-imagenet :param mode: train, val or test :param batchsz: batch size of sets, not batch of imgs :param n_way: :param k_shot: :param k_query: num of qeruy imgs per class :param resize: resize to :param startidx: start to index label from startidx """ self.batchsz = batchsz # batch of set, not batch of imgs self.n_way = n_way # n-way self.k_shot = k_shot # k-shot self.k_query = k_query # for evaluation self.setsz = self.n_way * self.k_shot # num of samples per set self.querysz = self.n_way * self.k_query # number of samples per set for evaluation self.resize = resize # resize to self.startidx = startidx # index label not from 0, but from startidx print('shuffle DB :%s, b:%d, %d-way, %d-shot, %d-query, resize:%d' % ( mode, batchsz, n_way, k_shot, k_query, resize)) if mode == 'train': self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'), transforms.Resize((self.resize, self.resize)), # transforms.RandomHorizontalFlip(), # transforms.RandomRotation(5), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) else: self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'), transforms.Resize((self.resize, self.resize)), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ]) self.path = os.path.join(root, 'images') # image path csvdata = self.loadCSV(os.path.join(root, mode + '.csv')) # csv path self.data = [] self.img2label = {} for i, (k, v) in enumerate(csvdata.items()): self.data.append(v) # [[img1, img2, ...], [img111, ...]] self.img2label[k] = i + self.startidx # {"img_name[:9]":label} self.cls_num = len(self.data) self.create_batch(self.batchsz)