Python scipy.linalg.lu() Examples

The following are 5 code examples of scipy.linalg.lu(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module scipy.linalg , or try the search function .
Example #1
Source File: blow.py    From blow with Apache License 2.0 6 votes vote down vote up
def __init__(self,in_channel):
        super(InvConv,self).__init__()

        weight=np.random.randn(in_channel,in_channel)
        q,_=linalg.qr(weight)
        w_p,w_l,w_u=linalg.lu(q.astype(np.float32))
        w_s=np.diag(w_u)
        w_u=np.triu(w_u,1)
        u_mask=np.triu(np.ones_like(w_u),1)
        l_mask=u_mask.T

        self.register_buffer('w_p',torch.from_numpy(w_p))
        self.register_buffer('u_mask',torch.from_numpy(u_mask))
        self.register_buffer('l_mask',torch.from_numpy(l_mask))
        self.register_buffer('l_eye',torch.eye(l_mask.shape[0]))
        self.register_buffer('s_sign',torch.sign(torch.from_numpy(w_s)))
        self.w_l=torch.nn.Parameter(torch.from_numpy(w_l))
        self.w_s=torch.nn.Parameter(torch.log(1e-7+torch.abs(torch.from_numpy(w_s))))
        self.w_u=torch.nn.Parameter(torch.from_numpy(w_u))

        self.weight=None
        self.invweight=None

        return 
Example #2
Source File: model.py    From glow-pytorch with MIT License 6 votes vote down vote up
def __init__(self, in_channel):
        super().__init__()

        weight = np.random.randn(in_channel, in_channel)
        q, _ = la.qr(weight)
        w_p, w_l, w_u = la.lu(q.astype(np.float32))
        w_s = np.diag(w_u)
        w_u = np.triu(w_u, 1)
        u_mask = np.triu(np.ones_like(w_u), 1)
        l_mask = u_mask.T

        w_p = torch.from_numpy(w_p)
        w_l = torch.from_numpy(w_l)
        w_s = torch.from_numpy(w_s)
        w_u = torch.from_numpy(w_u)

        self.register_buffer('w_p', w_p)
        self.register_buffer('u_mask', torch.from_numpy(u_mask))
        self.register_buffer('l_mask', torch.from_numpy(l_mask))
        self.register_buffer('s_sign', torch.sign(w_s))
        self.register_buffer('l_eye', torch.eye(l_mask.shape[0]))
        self.w_l = nn.Parameter(w_l)
        self.w_s = nn.Parameter(logabs(w_s))
        self.w_u = nn.Parameter(w_u) 
Example #3
Source File: FDImplicitEu.py    From Mastering-Python-for-Finance-source-codes with MIT License 5 votes vote down vote up
def _traverse_grid_(self):
        """ Solve using linear systems of equations """
        P, L, U = linalg.lu(self.coeffs)
        aux = np.zeros(self.M-1)

        for j in reversed(range(self.N)):
            aux[0] = np.dot(-self.a[1], self.grid[0, j])
            x1 = linalg.solve(L, self.grid[1:self.M, j+1]+aux)
            x2 = linalg.solve(U, x1)
            self.grid[1:self.M, j] = x2 
Example #4
Source File: FDCnEu.py    From Mastering-Python-for-Finance-source-codes with MIT License 5 votes vote down vote up
def _traverse_grid_(self):
        """ Solve using linear systems of equations """
        P, L, U = linalg.lu(self.M1)

        for j in reversed(range(self.N)):
            x1 = linalg.solve(L,
                              np.dot(self.M2,
                                     self.grid[1:self.M, j+1]))
            x2 = linalg.solve(U, x1)
            self.grid[1:self.M, j] = x2 
Example #5
Source File: randomized_pca.py    From neupy with MIT License 5 votes vote down vote up
def randomized_range_finder(A, size, n_iter):
    """
    Computes an orthonormal matrix whose range
    approximates the range of A.

    Parameters
    ----------
    A: 2D array
        The input data matrix

    size: integer
        Size of the return array

    n_iter: integer
        Number of power iterations used to stabilize the result

    Returns
    -------
    Q: 2D array
        A (size x size) projection matrix, the range of which
        approximates well the range of the input matrix A.

    Notes
    -----
    scikit-learn implementation
    """
    # Generating normal random vectors with shape: (A.shape[1], size)
    Q = np.random.normal(size=(A.shape[1], size))

    # Perform power iterations with Q to further 'imprint' the top
    # singular vectors of A in Q
    for i in range(n_iter):
        Q, _ = linalg.lu(np.dot(A, Q), permute_l=True)
        Q, _ = linalg.lu(np.dot(A.T, Q), permute_l=True)

    # Sample the range of A using by linear projection of Q
    # Extract an orthonormal basis
    Q, _ = linalg.qr(np.dot(A, Q), mode='economic')
    return Q