Python autograd.numpy.power() Examples
The following are 30
code examples of autograd.numpy.power().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
autograd.numpy
, or try the search function
.
Example #1
Source File: optimizer.py From tinyik with MIT License | 6 votes |
def optimize(self, angles0, target): """Calculate an optimum argument of an objective function.""" def new_objective(angles): a = angles - angles0 if isinstance(self.smooth_factor, (np.ndarray, list)): if len(a) == len(self.smooth_factor): return (self.f(angles, target) + np.sum(self.smooth_factor * np.power(a, 2))) else: raise ValueError('len(smooth_factor) != number of joints') else: return (self.f(angles, target) + self.smooth_factor * np.sum(np.power(a, 2))) return scipy.optimize.minimize( new_objective, angles0, **self.optimizer_opt).x
Example #2
Source File: optimizer.py From Robotic_Manipulation with MIT License | 6 votes |
def optimize(self, angles0, target): """Calculate an optimum argument of an objective function.""" def new_objective(angles): a = angles - angles0 if isinstance(self.smooth_factor, (np.ndarray, list)): if len(a) == len(self.smooth_factor): return (self.f(angles, target) + np.sum(self.smooth_factor * np.power(a, 2))) else: raise ValueError('len(smooth_factor) != number of joints') else: return (self.f(angles, target) + self.smooth_factor * np.sum(np.power(a, 2))) return scipy.optimize.minimize( new_objective, angles0, **self.optimizer_opt).x
Example #3
Source File: geometry.py From AeroSandbox with MIT License | 6 votes |
def J(self): # Returns the nondimensionalized polar moment of inertia, taken about the centroid. x = self.coordinates[:, 0] y = self.coordinates[:, 1] x_n = np.roll(x, -1) # x_next, or x_i+1 y_n = np.roll(y, -1) # y_next, or y_i+1 a = x * y_n - x_n * y # a is the area of the triangle bounded by a given point, the next point, and the origin. A = 0.5 * np.sum(a) # area x_c = 1 / (6 * A) * np.sum(a * (x + x_n)) y_c = 1 / (6 * A) * np.sum(a * (y + y_n)) centroid = np.array([x_c, y_c]) Ixx = 1 / 12 * np.sum(a * (np.power(y, 2) + y * y_n + np.power(y_n, 2))) Iyy = 1 / 12 * np.sum(a * (np.power(x, 2) + x * x_n + np.power(x_n, 2))) J = Ixx + Iyy return J
Example #4
Source File: geometry.py From AeroSandbox with MIT License | 6 votes |
def Iyy(self): # Returns the nondimensionalized Iyy moment of inertia, taken about the centroid. x = self.coordinates[:, 0] y = self.coordinates[:, 1] x_n = np.roll(x, -1) # x_next, or x_i+1 y_n = np.roll(y, -1) # y_next, or y_i+1 a = x * y_n - x_n * y # a is the area of the triangle bounded by a given point, the next point, and the origin. A = 0.5 * np.sum(a) # area x_c = 1 / (6 * A) * np.sum(a * (x + x_n)) y_c = 1 / (6 * A) * np.sum(a * (y + y_n)) centroid = np.array([x_c, y_c]) Iyy = 1 / 12 * np.sum(a * (np.power(x, 2) + x * x_n + np.power(x_n, 2))) Ivv = Iyy - A * centroid[0] ** 2 return Ivv
Example #5
Source File: geometry.py From AeroSandbox with MIT License | 6 votes |
def Ixx(self): # Returns the nondimensionalized Ixx moment of inertia, taken about the centroid. x = self.coordinates[:, 0] y = self.coordinates[:, 1] x_n = np.roll(x, -1) # x_next, or x_i+1 y_n = np.roll(y, -1) # y_next, or y_i+1 a = x * y_n - x_n * y # a is the area of the triangle bounded by a given point, the next point, and the origin. A = 0.5 * np.sum(a) # area x_c = 1 / (6 * A) * np.sum(a * (x + x_n)) y_c = 1 / (6 * A) * np.sum(a * (y + y_n)) centroid = np.array([x_c, y_c]) Ixx = 1 / 12 * np.sum(a * (np.power(y, 2) + y * y_n + np.power(y_n, 2))) Iuu = Ixx - A * centroid[1] ** 2 return Iuu
Example #6
Source File: dtlz.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): X_, X_M = x[:, :self.n_obj - 1], x[:, self.n_obj - 1:] g = anp.sum(anp.power(X_M, 0.1), axis=1) theta = 1 / (2 * (1 + g[:, None])) * (1 + 2 * g[:, None] * X_) theta = anp.column_stack([x[:, 0], theta[:, 1:]]) out["F"] = self.obj_func(theta, g)
Example #7
Source File: test_scalar_ops.py From autograd with MIT License | 5 votes |
def test_power_arg1(): x = npr.randn()**2 fun = lambda y : np.power(x, y) check_grads(fun)(npr.rand()**2)
Example #8
Source File: test_scalar_ops.py From autograd with MIT License | 5 votes |
def test_power_arg1_zero(): fun = lambda y : np.power(0., y) check_grads(fun)(npr.rand()**2)
Example #9
Source File: zakharov.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): a = np.sum(0.5 * np.arange(1, self.n_var + 1) * x, axis=1) out["F"] = np.sum(np.square(x), axis=1) + np.square(a) + np.power(a, 4)
Example #10
Source File: cdtlz.py From pymop with Apache License 2.0 | 5 votes |
def constraint_c4_cylindrical(f, r): # cylindrical l = anp.mean(f, axis=1) l = anp.expand_dims(l, axis=1) g = -anp.sum(anp.power(f - l, 2), axis=1) + anp.power(r, 2) return g
Example #11
Source File: dtlz.py From pymop with Apache License 2.0 | 5 votes |
def obj_func(self, X_, g, alpha=1): f = [] for i in range(0, self.n_obj): _f = (1 + g) _f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1) if i > 0: _f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0) f.append(_f) f = anp.column_stack(f) return f
Example #12
Source File: methods.py From tf-quant-finance with Apache License 2.0 | 5 votes |
def non_uniform_errors(f, num, ndim, label=None): """Build DataFrame of approximation errors with non uniform grid.""" points = non_uniform_grid(np.power(num, ndim), ndim) values = f(points) approx_all = non_uniform_approx_nearest(points, values) def name_errors(): for (ds, name), approx in zip(derivative_names(ndim), approx_all.T): actual = autograd(f, ds, points) yield name, np.abs(actual - approx) return _build_errors_df(name_errors(), label)
Example #13
Source File: dtlz.py From pymop with Apache License 2.0 | 5 votes |
def get_scale(n, scale_factor): return anp.power(anp.full(n, scale_factor), anp.arange(n))
Example #14
Source File: dtlz.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, ref_dirs, *args, **kwargs): F = self.problem.pareto_front(ref_dirs) return anp.power(F, ConvexProblem.get_power(self.n_obj))
Example #15
Source File: rastrigin.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): z = anp.power(x, 2) - self.A * anp.cos(2 * anp.pi * x) out["F"] = self.A * self.n_var + anp.sum(z, axis=1)
Example #16
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * anp.sum(x[:, 1:], axis=1) f2 = g * (1 - anp.power((f1 / g), 0.5)) out["F"] = anp.column_stack([f1, f2])
Example #17
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #18
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] c = anp.sum(x[:, 1:], axis=1) g = 1.0 + 9.0 * c / (self.n_var - 1) f2 = g * (1 - anp.power((f1 * 1.0 / g), 2)) out["F"] = anp.column_stack([f1, f2])
Example #19
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0.2807753191, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #20
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = 1 - anp.exp(-4 * x[:, 0]) * anp.power(anp.sin(6 * anp.pi * x[:, 0]), 6) g = 1 + 9.0 * anp.power(anp.sum(x[:, 1:], axis=1) / (self.n_var - 1.0), 0.25) f2 = g * (1 - anp.power(f1 / g, 2)) out["F"] = anp.column_stack([f1, f2])
Example #21
Source File: define_custom_problem_with_gradient.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * np.sum(x[:, 1:], axis=1) f2 = g * (1 - np.power((f1 / g), 0.5)) out["F"] = np.column_stack([f1, f2]) if "dF" in out: dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float) dF[:, 0, 0], dF[:, 0, 1:] = 1, 0 dF[:, 1, 0] = -0.5 * np.sqrt(g / x[:, 0]) dF[:, 1, 1:] = ((9 / (self.n_var - 1)) * (1 - 0.5 * np.sqrt(x[:, 0] / g)))[:, None] out["dF"] = dF
Example #22
Source File: define_custom_problem_with_gradient.py From pymop with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * anp.sum(x[:, 1:], axis=1) f2 = g * (1 - anp.power((f1 / g), 0.5)) out["F"] = anp.column_stack([f1, f2])
Example #23
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0.2807753191, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #24
Source File: dtlz.py From pymoo with Apache License 2.0 | 5 votes |
def obj_func(self, X_, g, alpha=1): f = [] for i in range(0, self.n_obj): _f = (1 + g) _f *= anp.prod(anp.cos(anp.power(X_[:, :X_.shape[1] - i], alpha) * anp.pi / 2.0), axis=1) if i > 0: _f *= anp.sin(anp.power(X_[:, X_.shape[1] - i], alpha) * anp.pi / 2.0) f.append(_f) f = anp.column_stack(f) return f
Example #25
Source File: dtlz.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): X_, X_M = x[:, :self.n_obj - 1], x[:, self.n_obj - 1:] g = anp.sum(anp.power(X_M, 0.1), axis=1) theta = 1 / (2 * (1 + g[:, None])) * (1 + 2 * g[:, None] * X_) theta = anp.column_stack([x[:, 0], theta[:, 1:]]) out["F"] = self.obj_func(theta, g)
Example #26
Source File: dtlz.py From pymoo with Apache License 2.0 | 5 votes |
def get_scale(n, scale_factor): return anp.power(anp.full(n, scale_factor), anp.arange(n))
Example #27
Source File: dtlz.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): self.problem._evaluate(X, out, **kwargs) out["F"] = anp.power(out["F"], self.get_power(self.n_obj))
Example #28
Source File: zakharov.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): a = anp.sum(0.5 * anp.arange(1, self.n_var + 1) * x, axis=1) out["F"] = anp.sum(anp.square(x), axis=1) + anp.square(a) + anp.power(a, 4)
Example #29
Source File: rastrigin.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): z = anp.power(x, 2) - self.A * anp.cos(2 * anp.pi * x) out["F"] = self.A * self.n_var + anp.sum(z, axis=1)
Example #30
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _evaluate(self, x, out, *args, **kwargs): f1 = x[:, 0] g = 1 + 9.0 / (self.n_var - 1) * anp.sum(x[:, 1:], axis=1) f2 = g * (1 - anp.power((f1 / g), 0.5)) out["F"] = anp.column_stack([f1, f2])