Python data_loader.get_loader() Examples
The following are 12
code examples of data_loader.get_loader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data_loader
, or try the search function
.
Example #1
Source File: main.py From mnist-svhn-transfer with MIT License | 6 votes |
def main(config): svhn_loader, mnist_loader = get_loader(config) solver = Solver(config, svhn_loader, mnist_loader) cudnn.benchmark = True # create directories if not exist if not os.path.exists(config.model_path): os.makedirs(config.model_path) if not os.path.exists(config.sample_path): os.makedirs(config.sample_path) if config.mode == 'train': solver.train() elif config.mode == 'sample': solver.sample()
Example #2
Source File: main.py From BRITS with MIT License | 6 votes |
def train(model): optimizer = optim.Adam(model.parameters(), lr=1e-3) data_iter = data_loader.get_loader(batch_size=args.batch_size) for epoch in range(args.epochs): model.train() run_loss = 0.0 for idx, data in enumerate(data_iter): data = utils.to_var(data) ret = model.run_on_batch(data, optimizer, epoch) run_loss += ret['loss'].item() print '\r Progress epoch {}, {:.2f}%, average loss {}'.format(epoch, (idx + 1) * 100.0 / len(data_iter), run_loss / (idx + 1.0)), evaluate(model, data_iter)
Example #3
Source File: test.py From ACME with GNU General Public License v3.0 | 5 votes |
def main(): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) val_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224)]) val_loader = get_loader(opts.img_path, val_transform, vocab, opts.data_path, partition='test', batch_size=opts.batch_size, shuffle=False, num_workers=opts.workers, pin_memory=True) print('Validation loader prepared.') test(val_loader)
Example #4
Source File: main.py From stargan with MIT License | 5 votes |
def main(config): # For fast training. cudnn.benchmark = True # Create directories if not exist. if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_save_dir): os.makedirs(config.model_save_dir) if not os.path.exists(config.sample_dir): os.makedirs(config.sample_dir) if not os.path.exists(config.result_dir): os.makedirs(config.result_dir) # Data loader. celeba_loader = None rafd_loader = None if config.dataset in ['CelebA', 'Both']: celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) if config.dataset in ['RaFD', 'Both']: rafd_loader = get_loader(config.rafd_image_dir, None, None, config.rafd_crop_size, config.image_size, config.batch_size, 'RaFD', config.mode, config.num_workers) # Solver for training and testing StarGAN. solver = Solver(celeba_loader, rafd_loader, config) if config.mode == 'train': if config.dataset in ['CelebA', 'RaFD']: solver.train() elif config.dataset in ['Both']: solver.train_multi() elif config.mode == 'test': if config.dataset in ['CelebA', 'RaFD']: solver.test() elif config.dataset in ['Both']: solver.test_multi()
Example #5
Source File: main.py From HistoGAN with GNU General Public License v3.0 | 5 votes |
def main(config): prepare_dirs_and_logger(config) torch.manual_seed(config.random_seed) if config.num_gpu > 0: torch.cuda.manual_seed(config.random_seed) if config.is_train: data_path = config.data_path batch_size = config.batch_size else: if config.test_data_path is None: data_path = config.data_path else: data_path = config.test_data_path batch_size = config.sample_per_image a_data_loader, b_data_loader = get_loader( data_path, batch_size, config.input_scale_size, config.num_worker, config.skip_pix2pix_processing) trainer = Trainer(config, a_data_loader, b_data_loader) if config.is_train: save_config(config) trainer.train() else: if not config.load_path: raise Exception("[!] You should specify `load_path` to load a pretrained model") trainer.test()
Example #6
Source File: main.py From SMIT with MIT License | 5 votes |
def main(config): from torch.backends import cudnn # For fast training cudnn.benchmark = True data_loader = get_loader( config.mode_data, config.image_size, config.batch_size, config.dataset_fake, config.mode, num_workers=config.num_workers, all_attr=config.ALL_ATTR, c_dim=config.c_dim) from misc.scores import set_score if set_score(config): return if config.mode == 'train': from train import Train Train(config, data_loader) from test import Test test = Test(config, data_loader) test(dataset=config.dataset_real) elif config.mode == 'test': from test import Test test = Test(config, data_loader) if config.DEMO_PATH: test.DEMO(config.DEMO_PATH) else: test(dataset=config.dataset_real)
Example #7
Source File: scores.py From SMIT with MIT License | 5 votes |
def __init__(self, config): super(Scores, self).__init__(config) self.data_loader = get_loader( config.mode_data, config.image_size, 1, config.dataset_fake, config.mode, num_workers=config.num_workers, all_attr=config.ALL_ATTR, c_dim=config.c_dim)
Example #8
Source File: main.py From BEGAN-tensorflow with Apache License 2.0 | 5 votes |
def main(config): prepare_dirs_and_logger(config) rng = np.random.RandomState(config.random_seed) tf.set_random_seed(config.random_seed) if config.is_train: data_path = config.data_path batch_size = config.batch_size do_shuffle = True else: setattr(config, 'batch_size', 64) if config.test_data_path is None: data_path = config.data_path else: data_path = config.test_data_path batch_size = config.sample_per_image do_shuffle = False data_loader = get_loader( data_path, config.batch_size, config.input_scale_size, config.data_format, config.split) trainer = Trainer(config, data_loader) if config.is_train: save_config(config) trainer.train() else: if not config.load_path: raise Exception("[!] You should specify `load_path` to load a pretrained model") trainer.test()
Example #9
Source File: test.py From SMIT with MIT License | 4 votes |
def DEMO(self, path): from data_loader import get_loader last_name = self.resume_name() save_folder = os.path.join(self.config.sample_path, '{}_test'.format(last_name)) create_dir(save_folder) batch_size = 1 no_label = self.config.dataset_fake in self.Binary_Datasets data_loader = get_loader( path, self.config.image_size, batch_size, shuffling=False, dataset='DEMO', Detect_Face=True, mode='test') label = self.config.DEMO_LABEL if self.config.DEMO_LABEL != '': label = torch.FloatTensor([int(i) for i in label.split(',')]).view( 1, -1) else: label = None _debug = range(self.config.style_label_debug + 1) style_all = self.G.random_style(max(self.config.batch_size, 50)) name = TimeNow_str() for i, real_x in enumerate(data_loader): save_path = os.path.join(save_folder, 'DEMO_{}_{}.jpg'.format( name, i + 1)) self.PRINT('Translated test images and saved into "{}"..!'.format( save_path)) for k in _debug: self.generate_SMIT( real_x, save_path, label=label, Multimodal=k, fixed_style=style_all, TIME=not i, no_label=no_label, circle=True) self.generate_SMIT( real_x, save_path, label=label, Multimodal=k, no_label=no_label, circle=True) # ==================================================================# # ==================================================================#
Example #10
Source File: train.py From pytorch-tutorial with MIT License | 4 votes |
def main(args): # Create model directory if not os.path.exists(args.model_path): os.makedirs(args.model_path) # Image preprocessing, normalization for the pretrained resnet transform = transforms.Compose([ transforms.RandomCrop(args.crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # Load vocabulary wrapper with open(args.vocab_path, 'rb') as f: vocab = pickle.load(f) # Build data loader data_loader = get_loader(args.image_dir, args.caption_path, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers) # Build the models encoder = EncoderCNN(args.embed_size).to(device) decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters()) optimizer = torch.optim.Adam(params, lr=args.learning_rate) # Train the models total_step = len(data_loader) for epoch in range(args.num_epochs): for i, (images, captions, lengths) in enumerate(data_loader): # Set mini-batch dataset images = images.to(device) captions = captions.to(device) targets = pack_padded_sequence(captions, lengths, batch_first=True)[0] # Forward, backward and optimize features = encoder(images) outputs = decoder(features, captions, lengths) loss = criterion(outputs, targets) decoder.zero_grad() encoder.zero_grad() loss.backward() optimizer.step() # Print log info if i % args.log_step == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}' .format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item()))) # Save the model checkpoints if (i+1) % args.save_step == 0: torch.save(decoder.state_dict(), os.path.join( args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1))) torch.save(encoder.state_dict(), os.path.join( args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))
Example #11
Source File: main.py From AUNets with MIT License | 4 votes |
def main(config): # For fast training cudnn.benchmark = True # Create directories if not exist if not os.path.exists(config.log_path): os.makedirs(config.log_path) if not os.path.exists(config.model_save_path): os.makedirs(config.model_save_path) # Data loader of_loader = None img_size = config.image_size rgb_loader = get_loader( config.metadata_path, img_size, img_size, config.batch_size, config.mode, demo=config.DEMO, num_workers=config.num_workers, OF=False, verbose=True, imagenet=config.finetuning == 'imagenet') if config.OF: of_loader = get_loader( config.metadata_path, img_size, img_size, config.batch_size, config.mode, demo=config.DEMO, num_workers=config.num_workers, OF=True, verbose=True, imagenet=config.finetuning == 'imagenet') # Solver from solver import Solver solver = Solver(rgb_loader, config, of_loader=of_loader) if config.SHOW_MODEL: solver.display_net() return if config.DEMO: solver.DEMO() return if config.mode == 'train': solver.train() solver.test() elif config.mode == 'val': solver.val(load=True, init=True) elif config.mode == 'test': solver.test() elif config.mode == 'sample': solver.sample()
Example #12
Source File: solver.py From AUNets with MIT License | 4 votes |
def val(self, init=False, load=False): if init: from data_loader import get_loader self.rgb_loader_val = get_loader(self.metadata_path, self.image_size, self.image_size, self.batch_size, 'val') if self.OF: self.of_loader_val = get_loader( self.metadata_path, self.image_size, self.image_size, self.batch_size, 'val', OF=True) txt_path = os.path.join(self.model_save_path, '0_init_val.txt') if load: last_name = os.path.basename(self.test_model).split('.')[0] txt_path = os.path.join(self.model_save_path, '{}_{}_val.txt'.format(last_name, '{}')) try: output_txt = sorted(glob.glob(txt_path.format('*')))[-1] number_file = len(glob.glob(output_txt)) except BaseException: number_file = 0 txt_path = txt_path.format(str(number_file).zfill(2)) D_path = os.path.join(self.model_save_path, '{}.pth'.format(last_name)) self.C.load_state_dict(torch.load(D_path)) self.C.eval() if load: self.f = open(txt_path, 'a') self.thresh = np.linspace(0.01, 0.99, 200).astype(np.float32) if not self.OF: self.of_loader_val = None f1, _, _, loss, f1_one = F1_TEST( self, self.rgb_loader_val, mode='VAL', OF=self.of_loader_val, verbose=load) if load: self.f.close() if init: return f1, loss, f1_one else: return f1, loss # ====================================================================# # ====================================================================#