Python data_loader.load_data() Examples

The following are 10 code examples of data_loader.load_data(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module data_loader , or try the search function .
Example #1
Source File: main.py    From transferlearning with MIT License 5 votes vote down vote up
def load_data(src, tar, root_dir):
    folder_src = root_dir + src + '/images/'
    folder_tar = root_dir + tar + '/images/'
    source_loader = data_loader.load_data(
        folder_src, CFG['batch_size'], True, CFG['kwargs'])
    target_train_loader = data_loader.load_data(
        folder_tar, CFG['batch_size'], True, CFG['kwargs'])
    target_test_loader = data_loader.load_data(
        folder_tar, CFG['batch_size'], False, CFG['kwargs'])
    return source_loader, target_train_loader, target_test_loader 
Example #2
Source File: main.py    From Unsupervised-Attention-guided-Image-to-Image-Translation with MIT License 5 votes vote down vote up
def test(self):
        """Test Function."""
        print("Testing the results")

        self.inputs = data_loader.load_data(
            self._dataset_name, self._size_before_crop,
            False, self._do_flipping)

        self.model_setup()
        saver = tf.train.Saver()
        init = tf.global_variables_initializer()

        with tf.Session() as sess:
            sess.run(init)

            chkpt_fname = tf.train.latest_checkpoint(self._checkpoint_dir)
            saver.restore(sess, chkpt_fname)

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)

            self._num_imgs_to_save = cyclegan_datasets.DATASET_TO_SIZES[
                self._dataset_name]
            self.save_images_bis(sess, sess.run(self.global_step))

            coord.request_stop()
            coord.join(threads) 
Example #3
Source File: conv.py    From rmnist with MIT License 5 votes vote down vote up
def __init__(self, n=0, train=True, transform=None, expanded=False):
        self.n = n
        self.transform = transform
        td, vd, ts = data_loader.load_data(n, expanded=expanded)
        if train: self.data = td
        else: self.data = vd 
Example #4
Source File: transfer.py    From rmnist with MIT License 5 votes vote down vote up
def transfer(n):
    td, vd, ts = data_loader.load_data(n, abstract=True, expanded=expanded)
    classifiers = [
        #sklearn.svm.SVC(),
        #sklearn.svm.SVC(kernel="linear", C=0.1),
        #sklearn.neighbors.KNeighborsClassifier(1),
        #sklearn.tree.DecisionTreeClassifier(),
        #sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
        sklearn.neural_network.MLPClassifier(alpha=1.0, hidden_layer_sizes=(300,), max_iter=500)
    ]
    for clf in classifiers:
        clf.fit(td[0], td[1])
        print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2)) 
Example #5
Source File: generate_abstract_features.py    From rmnist with MIT License 5 votes vote down vote up
def __init__(self, n=0, train=True, transform=None, expanded=False):
        self.n = n
        self.transform = transform
        td, vd, ts = data_loader.load_data(n, expanded=expanded)
        if train: self.data = td
        else: self.data = vd 
Example #6
Source File: anneal.py    From rmnist with MIT License 5 votes vote down vote up
def __init__(self, n=0, train=True, transform=None, expanded=False):
        self.n = n
        self.transform = transform
        td, vd, ts = data_loader.load_data(n, expanded=expanded)
        if train: self.data = td
        else: self.data = vd 
Example #7
Source File: baselines.py    From rmnist with MIT License 5 votes vote down vote up
def baselines(n):
    td, vd, ts = data_loader.load_data(n)
    classifiers = [
        sklearn.svm.SVC(C=1000),
        sklearn.svm.SVC(kernel="linear", C=0.1),
        sklearn.neighbors.KNeighborsClassifier(1),
        sklearn.tree.DecisionTreeClassifier(),
        sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
        sklearn.neural_network.MLPClassifier(alpha=1, hidden_layer_sizes=(500, 100))
    ]
    for clf in classifiers:
        clf.fit(td[0], td[1])
        print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2)) 
Example #8
Source File: train.py    From facial-expression-recognition-svm with GNU General Public License v3.0 4 votes vote down vote up
def train(epochs=HYPERPARAMS.epochs, random_state=HYPERPARAMS.random_state, 
          kernel=HYPERPARAMS.kernel, decision_function=HYPERPARAMS.decision_function, gamma=HYPERPARAMS.gamma, train_model=True):

        print( "loading dataset " + DATASET.name + "...")
        if train_model:
                data, validation = load_data(validation=True)
        else:
                data, validation, test = load_data(validation=True, test=True)
        
        if train_model:
            # Training phase
            print( "building model...")
            model = SVC(random_state=random_state, max_iter=epochs, kernel=kernel, decision_function_shape=decision_function, gamma=gamma)

            print( "start training...")
            print( "--")
            print( "kernel: {}".format(kernel))
            print( "decision function: {} ".format(decision_function))
            print( "max epochs: {} ".format(epochs))
            print( "gamma: {} ".format(gamma))
            print( "--")
            print( "Training samples: {}".format(len(data['Y'])))
            print( "Validation samples: {}".format(len(validation['Y'])))
            print( "--")
            start_time = time.time()
            model.fit(data['X'], data['Y'])
            training_time = time.time() - start_time
            print( "training time = {0:.1f} sec".format(training_time))

            if TRAINING.save_model:
                print( "saving model...")
                with open(TRAINING.save_model_path, 'wb') as f:
                        cPickle.dump(model, f)

            print( "evaluating...")
            validation_accuracy = evaluate(model, validation['X'], validation['Y'])
            print( "  - validation accuracy = {0:.1f}".format(validation_accuracy*100))
            return validation_accuracy
        else:
            # Testing phase : load saved model and evaluate on test dataset
            print( "start evaluation...")
            print( "loading pretrained model...")
            if os.path.isfile(TRAINING.save_model_path):
                with open(TRAINING.save_model_path, 'rb') as f:
                        model = cPickle.load(f)
            else:
                print( "Error: file '{}' not found".format(TRAINING.save_model_path))
                exit()

            print( "--")
            print( "Validation samples: {}".format(len(validation['Y'])))
            print( "Test samples: {}".format(len(test['Y'])))
            print( "--")
            print( "evaluating...")
            start_time = time.time()
            validation_accuracy = evaluate(model, validation['X'],  validation['Y'])
            print( "  - validation accuracy = {0:.1f}".format(validation_accuracy*100))
            test_accuracy = evaluate(model, test['X'], test['Y'])
            print( "  - test accuracy = {0:.1f}".format(test_accuracy*100))
            print( "  - evalution time = {0:.1f} sec".format(time.time() - start_time))
            return test_accuracy 
Example #9
Source File: eval.py    From Transformer-in-generating-dialogue with Apache License 2.0 4 votes vote down vote up
def eval():
	g = Graph(is_training = False)
	print("MSG : Graph loaded!")

	X, Sources, Targets = load_data('test')
	en2idx, idx2en = load_vocab('en.vocab.tsv')
	de2idx, idx2de = load_vocab('de.vocab.tsv')

	with g.graph.as_default():
		sv = tf.train.Supervisor()
		with sv.managed_session(config = tf.ConfigProto(allow_soft_placement = True)) as sess:
			# load pre-train model
			sv.saver.restore(sess, tf.train.latest_checkpoint(pm.checkpoint))
			print("MSG : Restore Model!")

			mname = open(pm.checkpoint + '/checkpoint', 'r').read().split('"')[1]

			if not os.path.exists('Results'):
				os.mkdir('Results')
			with codecs.open("Results/" + mname, 'w', 'utf-8') as f:
				list_of_refs, predict = [], []
				# Get a batch
				for i in range(len(X) // pm.batch_size):
					x = X[i * pm.batch_size: (i + 1) * pm.batch_size]
					sources = Sources[i * pm.batch_size: (i + 1) * pm.batch_size]
					targets = Targets[i * pm.batch_size: (i + 1) * pm.batch_size]

					# Autoregressive inference
					preds = np.zeros((pm.batch_size, pm.maxlen), dtype = np.int32)
					for j in range(pm.maxlen):
						_preds = sess.run(g.preds, feed_dict = {g.inpt: x, g.outpt: preds})
						preds[:, j] = _preds[:, j]

					for source, target, pred in zip(sources, targets, preds):
						got = " ".join(idx2de[idx] for idx in pred).split("<EOS>")[0].strip()
						f.write("- Source: {}\n".format(source))
						f.write("- Ground Truth: {}\n".format(target))
						f.write("- Predict: {}\n\n".format(got))
						f.flush()

						# Bleu Score
						ref = target.split()
						prediction = got.split()
						if len(ref) > pm.word_limit_lower and len(prediction) > pm.word_limit_lower:
							list_of_refs.append([ref])
							predict.append(prediction)

				score = corpus_bleu(list_of_refs, predict)
				f.write("Bleu Score = " + str(100 * score)) 
Example #10
Source File: eval_sick.py    From neon with Apache License 2.0 4 votes vote down vote up
def main():
    # parse the command line arguments
    parser = NeonArgparser(__doc__)
    parser.add_argument('--output_path', required=True,
                        help='Output path used when training model')
    parser.add_argument('--w2v_path', required=False, default=None,
                        help='Path to GoogleNews w2v file for voab expansion.')
    parser.add_argument('--eval_data_path', required=False, default='./SICK_data',
                        help='Path to the SICK dataset for evaluating semantic relateness')
    parser.add_argument('--max_vocab_size', required=False, default=1000000,
                        help='Limit the vocabulary expansion to fit in GPU memory')
    parser.add_argument('--subset_pct', required=False, default=100,
                        help='subset of training dataset to use (use to retreive \
                        preprocessed data from training)')
    args = parser.parse_args(gen_be=True)

    # load vocab file from training
    _, vocab_file = load_data(args.data_dir, output_path=args.output_path,
                              subset_pct=float(args.subset_pct))
    vocab, _, _ = load_obj(vocab_file)

    vocab_size = len(vocab)
    neon_logger.display("\nVocab size from the dataset is: {}".format(vocab_size))

    index_from = 2  # 0: padding 1: oov
    vocab_size_layer = vocab_size + index_from
    max_len = 30

    # load trained model
    model_dict = load_obj(args.model_file)

    # Vocabulary expansion trick needs to pass the correct vocab set to evaluate (for tokenization)
    if args.w2v_path:
        neon_logger.display("Performing Vocabulary Expansion... Loading W2V...")
        w2v_vocab, w2v_vocab_size = get_w2v_vocab(args.w2v_path,
                                                  int(args.max_vocab_size), cache=True)

        vocab_size_layer = w2v_vocab_size + index_from
        model = load_sent_encoder(model_dict, expand_vocab=True, orig_vocab=vocab,
                                  w2v_vocab=w2v_vocab, w2v_path=args.w2v_path, use_recur_last=True)
        vocab = w2v_vocab
    else:
        # otherwise stick with original vocab size used to train the model
        model = load_sent_encoder(model_dict, use_recur_last=True)

    model.initialize(dataset=(max_len, 1))

    evaluate(model, vocab=vocab, data_path=args.eval_data_path, evaltest=True,
             vocab_size_layer=vocab_size_layer)