Python scipy.optimize.rosen_der() Examples
The following are 11
code examples of scipy.optimize.rosen_der().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.optimize
, or try the search function
.
Example #1
Source File: test_optimize.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_minimize_l_bfgs_b_maxfun_interruption(self): # gh-6162 f = optimize.rosen g = optimize.rosen_der values = [] x0 = np.ones(7) * 1000 def objfun(x): value = f(x) values.append(value) return value # Look for an interesting test case. # Request a maxfun that stops at a particularly bad function # evaluation somewhere between 100 and 300 evaluations. low, medium, high = 30, 100, 300 optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high) v, k = max((y, i) for i, y in enumerate(values[medium:])) maxfun = medium + k # If the minimization strategy is reasonable, # the minimize() result should not be worse than the best # of the first 30 function evaluations. target = min(values[:low]) xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun) assert_array_less(fmin, target)
Example #2
Source File: test_numerics.py From fluids with MIT License | 6 votes |
def test_translate_bound_f_jac(): from scipy.optimize import rosen_der def rosen_test(x): x, y = x return (1.0 - x)**2 + 100.0*(y - x**2)**2 low, high = [-2, -.2], [3.0, 4] f_j, into, outof = translate_bound_f_jac(rosen_test, rosen_der, low=low, high=high) point = [3, -2] f0, j0 = f_j(point) f0_check = translate_bound_func(rosen_test, low=low, high=high)[0](point) assert_allclose(f0_check, f0, rtol=1e-13) j0_check = translate_bound_jac(rosen_der, low=low, high=high)[0](point) assert_allclose(j0_check, j0, rtol=1e-13)
Example #3
Source File: test_optimization.py From chumpy with MIT License | 6 votes |
def compute_dr_wrt(self, wrt): if wrt is self.x: if visualize: import matplotlib.pyplot as plt residuals = np.sum(self.r**2) print('------> RESIDUALS %.2e' % (residuals,)) print('------> CURRENT GUESS %s' % (str(self.x.r),)) plt.figure(123) if not hasattr(self, 'vs'): self.vs = [] self.xs = [] self.ys = [] self.vs.append(residuals) self.xs.append(self.x.r[0]) self.ys.append(self.x.r[1]) plt.clf(); plt.subplot(1,2,1) plt.plot(self.vs) plt.subplot(1,2,2) plt.plot(self.xs, self.ys) plt.draw() return row(rosen_der(self.x.r))
Example #4
Source File: test_optimize.py From Computable with MIT License | 5 votes |
def test_rosenbrock(self): x0 = np.array([-1.2, 1.0]) sol = optimize.minimize(optimize.rosen, x0, jac=optimize.rosen_der, hess=optimize.rosen_hess, tol=1e-5, method='Newton-CG') assert_(sol.success, sol.message) assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)
Example #5
Source File: test_optimize.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_minimize_l_bfgs_maxls(self): # check that the maxls is passed down to the Fortran routine sol = optimize.minimize(optimize.rosen, np.array([-1.2,1.0]), method='L-BFGS-B', jac=optimize.rosen_der, options={'disp': False, 'maxls': 1}) assert_(not sol.success)
Example #6
Source File: test_optimize.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_rosenbrock(self): x0 = np.array([-1.2, 1.0]) sol = optimize.minimize(optimize.rosen, x0, jac=optimize.rosen_der, hess=optimize.rosen_hess, tol=1e-5, method='Newton-CG') assert_(sol.success, sol.message) assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)
Example #7
Source File: test_optimize.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def setup_method(self): self.x0 = [5, 5] self.func = optimize.rosen self.jac = optimize.rosen_der self.hess = optimize.rosen_hess self.hessp = optimize.rosen_hess_prod self.bounds = [(0., 10.), (0., 10.)]
Example #8
Source File: test_numerics.py From fluids with MIT License | 5 votes |
def test_translate_bound_jac(): from scipy.optimize import rosen_der def rosen_test(x): x, y = x return (1.0 - x)**2 + 100.0*(y - x**2)**2 j, into, outof = translate_bound_jac(rosen_der, low=[-2, -.2], high=[3.0, 4]) f, into, outof = translate_bound_func(rosen_test, low=[-2, -.2], high=[3.0, 4]) point = [3, -2] jac_num = jacobian(f, point, perturbation=1e-8) jac_anal = j(point) assert_allclose(jac_num, jac_anal, rtol=1e-6)
Example #9
Source File: test_objective.py From pyPESTO with BSD 3-Clause "New" or "Revised" License | 5 votes |
def rosen_for_sensi(max_sensi_order, integrated=False, x=None): """ Rosenbrock function from scipy.optimize. """ if x is None: x = [0, 1] return obj_for_sensi(so.rosen, so.rosen_der, so.rosen_hess, max_sensi_order, integrated, x)
Example #10
Source File: test_visualize.py From pyPESTO with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_problem(): # define a pypesto objective objective = pypesto.Objective(fun=so.rosen, grad=so.rosen_der, hess=so.rosen_hess) # define a pypesto problem (lb, ub) = create_bounds() problem = pypesto.Problem(objective=objective, lb=lb, ub=ub) return problem
Example #11
Source File: test_optimize.py From GraphicDesignPatternByPython with MIT License | 4 votes |
def test_minimize_callback_copies_array(self, method): # Check that arrays passed to callbacks are not modified # inplace by the optimizer afterward if method in ('fmin_tnc', 'fmin_l_bfgs_b'): func = lambda x: (optimize.rosen(x), optimize.rosen_der(x)) else: func = optimize.rosen jac = optimize.rosen_der hess = optimize.rosen_hess x0 = np.zeros(10) # Set options kwargs = {} if method.startswith('fmin'): routine = getattr(optimize, method) if method == 'fmin_slsqp': kwargs['iter'] = 5 elif method == 'fmin_tnc': kwargs['maxfun'] = 100 else: kwargs['maxiter'] = 5 else: def routine(*a, **kw): kw['method'] = method return optimize.minimize(*a, **kw) if method == 'TNC': kwargs['options'] = dict(maxiter=100) else: kwargs['options'] = dict(maxiter=5) if method in ('fmin_ncg',): kwargs['fprime'] = jac elif method in ('Newton-CG',): kwargs['jac'] = jac elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg', 'trust-constr'): kwargs['jac'] = jac kwargs['hess'] = hess # Run with callback results = [] def callback(x, *args, **kwargs): results.append((x, np.copy(x))) sol = routine(func, x0, callback=callback, **kwargs) # Check returned arrays coincide with their copies and have no memory overlap assert_(len(results) > 2) assert_(all(np.all(x == y) for x, y in results)) assert_(not any(np.may_share_memory(x[0], y[0]) for x, y in itertools.combinations(results, 2)))