Python allennlp.modules.Attention() Examples

The following are 9 code examples of allennlp.modules.Attention(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module allennlp.modules , or try the search function .
Example #1
Source File: coverage_transition_function.py    From allennlp-semparse with Apache License 2.0 6 votes vote down vote up
def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        dropout: float = 0.0,
    ) -> None:
        super().__init__(
            encoder_output_dim=encoder_output_dim,
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            activation=activation,
            add_action_bias=add_action_bias,
            dropout=dropout,
        )
        # See the class docstring for a description of what this does.
        self._checklist_multiplier = Parameter(torch.FloatTensor([1.0])) 
Example #2
Source File: usermodule.py    From ConvLab with MIT License 5 votes vote down vote up
def __init__(self, vocab_size, max_len, embed_size, hidden_size, sos_id=2, eos_id=3, n_layers=1, rnn_cell='GRU',
            input_dropout_p=0, dropout_p=0, use_attention=False):
        super(Decoder, self).__init__()

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.input_dropout = nn.Dropout(p=input_dropout_p)
        if rnn_cell == 'LSTM':
            self.rnn_cell = nn.LSTM
        elif rnn_cell == 'GRU':
            self.rnn_cell = nn.GRU
        else:
            raise ValueError("Unsupported RNN Cell: {0}".format(rnn_cell))
        self.rnn = self.rnn_cell(embed_size, hidden_size, n_layers, batch_first=True, dropout=dropout_p)

        self.output_size = vocab_size
        self.max_length = max_len
        self.use_attention = use_attention
        self.eos_id = eos_id
        self.sos_id = sos_id

        self.init_input = None

        self.embedding = nn.Embedding(self.output_size, embed_size)
        if use_attention:
            self.attention = Attention(self.hidden_size)

        self.out = nn.Linear(self.hidden_size, self.output_size) 
Example #3
Source File: prolocal_model.py    From propara with Apache License 2.0 5 votes vote down vote up
def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 seq2seq_encoder: Seq2SeqEncoder,
                 initializer: InitializerApplicator) -> None:
        super(ProLocalModel, self).__init__(vocab)

        self.text_field_embedder = text_field_embedder
        self.seq2seq_encoder = seq2seq_encoder

        self.attention_layer = \
            Attention(similarity_function=BilinearSimilarity(2 * seq2seq_encoder.get_output_dim(),
                                                             seq2seq_encoder.get_output_dim()), normalize=True)

        self.num_types = self.vocab.get_vocab_size("state_change_type_labels")
        self.aggregate_feedforward = Linear(seq2seq_encoder.get_output_dim(),
                                            self.num_types)

        self.span_metric = SpanBasedF1Measure(vocab,
                                              tag_namespace="state_change_tags")  # by default "O" is ignored in metric computation
        self.num_tags = self.vocab.get_vocab_size("state_change_tags")

        self.tag_projection_layer = TimeDistributed(Linear(self.seq2seq_encoder.get_output_dim() + 2
                                                           , self.num_tags))
        self._type_accuracy = CategoricalAccuracy()

        self.type_f1_metrics = {}
        self.type_labels_vocab = self.vocab.get_index_to_token_vocabulary("state_change_type_labels")
        for type_label in self.type_labels_vocab.values():
            self.type_f1_metrics["type_" + type_label] = F1Measure(self.vocab.get_token_index(type_label, "state_change_type_labels"))

        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self) 
Example #4
Source File: linking_transition_function.py    From allennlp-semparse with Apache License 2.0 5 votes vote down vote up
def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        mixture_feedforward: FeedForward = None,
        dropout: float = 0.0,
        num_layers: int = 1,
    ) -> None:
        super().__init__(
            encoder_output_dim=encoder_output_dim,
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            activation=activation,
            add_action_bias=add_action_bias,
            dropout=dropout,
            num_layers=num_layers,
        )
        self._mixture_feedforward = mixture_feedforward

        if mixture_feedforward is not None:
            check_dimensions_match(
                encoder_output_dim,
                mixture_feedforward.get_input_dim(),
                "hidden state embedding dim",
                "mixture feedforward input dim",
            )
            check_dimensions_match(
                mixture_feedforward.get_output_dim(),
                1,
                "mixture feedforward output dim",
                "dimension for scalar value",
            ) 
Example #5
Source File: linking_coverage_transition_function.py    From allennlp-semparse with Apache License 2.0 5 votes vote down vote up
def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        mixture_feedforward: FeedForward = None,
        dropout: float = 0.0,
    ) -> None:
        super().__init__(
            encoder_output_dim=encoder_output_dim,
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            activation=activation,
            add_action_bias=add_action_bias,
            dropout=dropout,
        )
        self._linked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))
        self._mixture_feedforward = mixture_feedforward

        if mixture_feedforward is not None:
            check_dimensions_match(
                encoder_output_dim,
                mixture_feedforward.get_input_dim(),
                "hidden state embedding dim",
                "mixture feedforward input dim",
            )
            check_dimensions_match(
                mixture_feedforward.get_output_dim(),
                1,
                "mixture feedforward output dim",
                "dimension for scalar value",
            ) 
Example #6
Source File: nlvr_direct_semantic_parser.py    From allennlp-semparse with Apache License 2.0 5 votes vote down vote up
def __init__(
        self,
        vocab: Vocabulary,
        sentence_embedder: TextFieldEmbedder,
        action_embedding_dim: int,
        encoder: Seq2SeqEncoder,
        attention: Attention,
        decoder_beam_search: BeamSearch,
        max_decoding_steps: int,
        dropout: float = 0.0,
    ) -> None:
        super(NlvrDirectSemanticParser, self).__init__(
            vocab=vocab,
            sentence_embedder=sentence_embedder,
            action_embedding_dim=action_embedding_dim,
            encoder=encoder,
            dropout=dropout,
        )
        self._decoder_trainer = MaximumMarginalLikelihood()
        self._decoder_step = BasicTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=attention,
            activation=Activation.by_name("tanh")(),
            add_action_bias=False,
            dropout=dropout,
        )
        self._decoder_beam_search = decoder_beam_search
        self._max_decoding_steps = max_decoding_steps
        self._action_padding_index = -1 
Example #7
Source File: copynet.py    From summarus with Apache License 2.0 5 votes vote down vote up
def __init__(self,
                 vocab: Vocabulary,
                 source_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 attention: Attention,
                 beam_size: int,
                 max_decoding_steps: int,
                 target_embedding_dim: int = None,
                 copy_token: str = "@COPY@",
                 source_namespace: str = "tokens",
                 target_namespace: str = "target_tokens",
                 tensor_based_metric: Metric = None,
                 token_based_metric: Metric = None,
                 tie_embeddings: bool = False) -> None:
        target_embedding_dim = target_embedding_dim or source_embedder.get_output_dim()
        CopyNetSeq2Seq.__init__(
            self,
            vocab,
            source_embedder,
            encoder,
            attention,
            beam_size,
            max_decoding_steps,
            target_embedding_dim,
            copy_token,
            source_namespace,
            target_namespace,
            tensor_based_metric,
            token_based_metric
        )
        self._tie_embeddings = tie_embeddings

        if self._tie_embeddings:
            assert source_namespace == target_namespace
            assert "token_embedder_tokens" in dict(self._source_embedder.named_children())
            source_token_embedder = dict(self._source_embedder.named_children())["token_embedder_tokens"]
            self._target_embedder.weight = source_token_embedder.weight

        if tensor_based_metric is None:
            self._tensor_based_metric = None 
Example #8
Source File: basic_transition_function.py    From allennlp-semparse with Apache License 2.0 4 votes vote down vote up
def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        dropout: float = 0.0,
        num_layers: int = 1,
    ) -> None:
        super().__init__()
        self._input_attention = input_attention
        self._add_action_bias = add_action_bias
        self._activation = activation
        self._num_layers = num_layers

        # Decoder output dim needs to be the same as the encoder output dim since we initialize the
        # hidden state of the decoder with the final hidden state of the encoder.
        output_dim = encoder_output_dim
        input_dim = output_dim
        # Our decoder input will be the concatenation of the attended encoder hidden state (i.e.,
        # the attended question encoding) and the previous action embedding, and we'll project that
        # down to the decoder's `input_dim`, which we arbitrarily set to be the same as
        # `output_dim`.
        self._input_projection_layer = Linear(encoder_output_dim + action_embedding_dim, input_dim)
        # Before making a prediction, we'll compute an attention over the input given our updated
        # hidden state. Then we concatenate those with the decoder state and project to
        # `action_embedding_dim` to make a prediction.
        self._output_projection_layer = Linear(
            output_dim + encoder_output_dim, action_embedding_dim
        )
        if self._num_layers > 1:
            self._decoder_cell = LSTM(input_dim, output_dim, self._num_layers)
        else:
            # We use a ``LSTMCell`` if we just have one layer because it is slightly faster since we are
            # just running the LSTM for one step each time.
            self._decoder_cell = LSTMCell(input_dim, output_dim)

        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x 
Example #9
Source File: seq2seq.py    From summarus with Apache License 2.0 4 votes vote down vote up
def __init__(self,
                 vocab: Vocabulary,
                 source_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 max_decoding_steps: int,
                 attention: Attention = None,
                 beam_size: int = None,
                 target_namespace: str = "tokens",
                 target_embedding_dim: int = None,
                 scheduled_sampling_ratio: float = 0.,
                 use_projection: bool = False,
                 projection_dim: int = None,
                 tie_embeddings: bool = False) -> None:
        super(Seq2Seq, self).__init__(
            vocab,
            source_embedder,
            encoder,
            max_decoding_steps,
            attention,
            None,
            beam_size,
            target_namespace,
            target_embedding_dim,
            scheduled_sampling_ratio
        )
        use_projection = use_projection or projection_dim is not None

        self._tie_embeddings = tie_embeddings

        if self._tie_embeddings:
            assert "token_embedder_tokens" in dict(self._source_embedder.named_children())
            source_token_embedder = dict(self._source_embedder.named_children())["token_embedder_tokens"]
            self._target_embedder.weight = source_token_embedder.weight

        num_classes = self.vocab.get_vocab_size(self._target_namespace)
        self._use_projection = use_projection
        if self._use_projection:
            self._projection_dim = projection_dim or self._source_embedder.get_output_dim()
            self._hidden_projection_layer = Linear(self._decoder_output_dim, self._projection_dim)
            self._output_projection_layer = Linear(self._projection_dim, num_classes)
        else:
            self._output_projection_layer = Linear(self._decoder_output_dim, num_classes)
        self._bleu = False