Python tensorflow_hub.get_num_image_channels() Examples
The following are 7
code examples of tensorflow_hub.get_num_image_channels().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow_hub
, or try the search function
.
Example #1
Source File: retrain.py From sign-language-gesture-recognition with MIT License | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #2
Source File: retrain.py From aiexamples with Apache License 2.0 | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #3
Source File: retrain.py From FaceClassification_Tensorflow with MIT License | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #4
Source File: retrain_v2.py From uai-sdk with Apache License 2.0 | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #5
Source File: retrain.py From AIDog with Apache License 2.0 | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #6
Source File: retrain.py From hub with Apache License 2.0 | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image
Example #7
Source File: retrain.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def add_jpeg_decoding(module_spec): """Adds operations that perform JPEG decoding and resizing to the graph.. Args: module_spec: The hub.ModuleSpec for the image module being used. Returns: Tensors for the node to feed JPEG data into, and the output of the preprocessing steps. """ input_height, input_width = hub.get_expected_image_size(module_spec) input_depth = hub.get_num_image_channels(module_spec) jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth) # Convert from full range of uint8 to range [0,1] of float32. decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) resize_shape = tf.stack([input_height, input_width]) resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32) resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int) return jpeg_data, resized_image